KGS Spring '99 National Conference / March 27, 1999 / Seoul / Korea

A Propoal for an Appropriate Quality Control of Driven Piles

¹⁾, Myung-Whan Lee, ²⁾, Hun-Sung Hong, ³⁾, Chun-Whan Cho

¹⁾ () , Principal Researcher, Piletech Consulting Engineers, (02) 3402-2361
²⁾ () , Principal, Piletech Consulting Engineers
³⁾ (), (02) 2145-6584

SYNOPSIS : Pile driving technique has been regarded as the most reliable way of constructing deep foundations. Engineers have long believed that the quality of the installed piles is a simple function of the set values which can easily be obtained from the field pile driving records. Consequently most of the local building codes are based on the dynamic formula. However it has been proven that the quality of the driven pile is influenced not only by the set values but also by various factors, such as hammer performance, helmet characteristics, time dependent geotechnical characteristics of the site, etc., from the results of various researches made during the last two decades. In this paper an appropriate quality control scheme has been proposed by taking various influencing factors into consideration.

Key words : driven piles, quality control, dynamic formula, time dependent geotechnical characteristics of site, hammer performance

1.

가

가

가

SIP

가

•

.

. 가 .

> 609.6×12.0mm 1 (SPS400) 1 .

•

() 1

1	

	SPS400			SPS490
	(t)		(t)	
K25	104.0		104.0	
K35	149.0		149.0	
K45	143.0		166.0	
KB60	98.0		209.0	
KB80	86.0		204.0	
HH5	132.0		132.0	
HH7	164.0		164.0	
HH9	149.0		1920	
HH11	128.0		222.0	
HH14	138.0		233.0	
HH16	122.0		196.0	

2.2

2.3 -

2

	SF/EB	Q _{toe}	Ru (kN)	_{cmax} (MPa)	^{tmax} (MPa)	BPM	Q _{toe}	BPM	R _u (kN)
PHC400 30/70	D/120	2100	39.245	7.396	167.5	D/27	250	2059	
	D/60	2100	36.921	5.012	196.5				
	D/30	2100	31.777	2.275	267.0				
ø406×12t 30/70	D/120	2400	240.360	49.814	267.7	D/53	333	2333	
	D/60	2400	221.007	23.649	415.4				
		D/30	2400	207.468	7.701	569.7			
ø406×12t 40/60		D/120	2400	228.227	46.466	258.4	D/53	333	2333
	40/60	D/60	2400	213.910	26.764	369.6			
		D/30	2400	207.758	12.439	382.2			
H300×300	40/60	D/120	2500	214.302	41.871	277.7	D/59	333	2471
×15×15	D/60	2500	203.999	23.458	396.1	2,00	000		

2

가

.

toe quake

가

2.4

•

+ +

3 .

.

가

. 가

.

가

. 가

•

가 가 가

3

4 (2)

,

가

(

)

. 가

.

가

가

2.6

.

.

PDA 가 가 기

FHWA

가

2. , , , , , (1998), " '98 , pp.173-178. 3. , , , , (1995), " ,"

,"

'95 , pp.69-90.

4. , , (1998), " , pp.191-198. 가," '98 가

- 5. Skov, R. and Denver, I.I. (1988), "Time-dependence of bearing capacity of piles," Proceedings of the 3rd International Conference on the Application of Stress-Wave Theory to Piles," BiTech Publishers, Ottawa, pp.879-888.
- 6. Svinkin, M.R., Morgano, C.M. and Morvant, M. (1994), "Pile capacity as a function of time in clayey and sandy soils," Proceedings of the 5th International Conference on Piling and Deep Foundations, Bruges, paper 1.11.