HCP(Hybrid Composite Pile)의 관입성 분석 및 연결부의 건전성 연구

2006년 12월

국립한경대학교 건설공학연구소

제 출 문

(주)파일테크 귀하

귀사에서 의뢰한 "HCP(Hybrid Composite Pile)의 관입성 분석 및 연결부의 건전성 연구" 용역을 완료하였기에 그 성과를 본 보고서 로 작성하여 제출합니다.

2006년 12월

국립한경대학교 건설공학연구소

소 장 안 태 진

[연구진]

책임연구원 구자 갑 (국립한경대학교 토목공학과 교수, 공학박사) 연구원 이 장 덕 (국립한경대학교 토목공학과 겸임교수, 공학박사)

목 차

제1장. HCP 개요1
제2장. 이음부 상세해석9
제3장. HCP 시험항타13
제4장. HCP Bending 시험22
제5장. HCP 인발시험25
제6장. 결론27
■ 부록
· CAPWAP 분석 ···········28

제 1장 HCP 개요

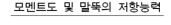
1.1 개발배경

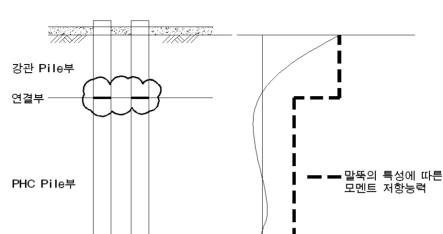
국내의 사회기반 시설인 고속도로, 항만 및 공항 등의 확충과 신도시 개발사업 등으로 인해 각종 말뚝의 수요가 급증하는 것으로 알려져 있다. 토목공사에서 주로 사용되고 있는 강관말뚝의 수요를 보더라도 국내 건설 경기가 활황일 때인 1997년 IMF이전 연간 67만 톤의 강관말뚝이 사용되었으며 건설경기가 다소 위축되고 있는 최근 2006년을 기준으로 보더라도 연간 40만 톤으로 국내건설 경기에 따라 다소 변하지만 토목공사에서의 강관말뚝의수요는 꾸준히 계속되고 있다. 하지만 국내 말뚝수요의 대부분을 이루고 있는 건축공사에서는 연약지반의 심도가 깊거나 특별한 지반이나 하중조건 이외에는 강관말뚝의 적용 사례는 찾아보기 힘들 정도로 강관말뚝의 적용은 제한적이다.

이와 같이 공사 성격에 따라 적용되는 말뚝의 종류가 확연히 구분되는 이유는 상부구조물에서 전달되는 하중의 종류에 따라 달라지는 것이 보통이며, 비교적 큰 수평력이 작용하는 토목구조물에서의 말뚝은 횡력, 휨모멘트 및 축력에 저항할 수 있는 강관말뚝을 선호하게된다. 반면 건축구조물에서의 말뚝은 그동안 횡력이나 휨모멘트에 비해 축력에 의해 지배된다는 판단으로 축력에 대한 저항력이 큰 콘크리트말뚝을 선호하였으나, 근래 높이가 높은 건물 및 중요시설에 이용되는 건물 등을 중심으로 내풍설계, 내진설계등이 도입되면서수평력에 대한 콘크리트말뚝의 적용성에 대한 검토가 대두되고 있는 실정이다.

우리나라에 강관말뚝이 사용되기 시작한 것은 1970년대 초반으로 강관말뚝은 단위 면적당하중지지능력이 현재 사용 중인 모든 말뚝의 재료 중에 가장 우수하고 같은 하중을 지지하는데 필요한 말뚝재료의 중량도 가장 경량이며 또한 시공성도 우수하고 이음이나 절단도용이하기 때문에 지층 변화가 심한 현장에 소요길이 까지 시공할 수 있어 현장적용성이 뛰어나다.

이처럼 강관말뚝은 많은 장점을 가지고 있지만 치명적인 약점이 말뚝재료가 고가라는 것이다. 또한 국내에서 강재를 전량 외국 수입에 의존하므로 수급 및 가격의 변화가 심할 수밖에 없다. 2002년을 기준으로 볼 때 강관말뚝 대비 콘크리트 말뚝의 재료비는 약 2배에 해당되었으나 세계원자재의 급등으로 2004년을 기준으로 강관말뚝 대 콘크리트 말뚝의 재료비는 3배에 달하다가 최고 4배 가까이 이르는 등 가격변화를 예측하기가 쉽지 않아 2006년 현재 시공 중인 토목공사는 말뚝재료비가 설계당시인 2002년 값이 반영되어 공사를 수행하는 시공회사의 고통이 가중되고 있는 실정이다. 또한 강관말뚝 재료비의 증가는 전체공사


비의 증가로 이어져 국가적으로도 큰 손실이 아닐 수 없다.


따라서 강관말뚝의 기능은 유지를 하면서 말뚝의 재료비를 경감시킬 수 있는, 즉 안전성도 강관말뚝의 동등이상을 유지하면서 강관말뚝보다 훨씬 경제적인 말뚝에 대한 연구가 필요 하며 이러한 말뚝을 제작하여 현장에 적용성을 검증하는 것이 본 보고서의 목적이다.

1.2 개선된 HCP 개요 및 주요특징

고강도 콘크리트(PHC) 말뚝이 일본에서 국내에 도입된 것은 1992년이며 그 이전 까지는 압축강도 500kgf/cm인 PC말뚝이 사용되었다. 일반 PC말뚝은 국내지반에서 항타 중 손상이 매우 빈번하게 발생하였을 뿐 아니라 무엇보다도 연결부의 신뢰성 확보에 문제가 있어 말 뚝항타 심도가 깊어지는 경우 적용에 한계가 있었다. 이러한 PC말뚝의 한계를 극복하기위해 일본에서 도입된 압축강도 800kgf/cm인 PHC말뚝은 연결부에 강판을 부착하므로 용접연결이 용이하게 제작되어 기존의 PC말뚝의 단점을 해결하였지만 기존의 건축공사의 PC 말뚝을 대치하는 것으로 국내에 적용되고 있는 실정이다. 콘크리트 말뚝의 자재는 대부분 국내에서 수급이 가능하므로 원자재 값의 급등으로 인한 재료비의 급격한 상승이 없이 1992년 도입 이래 안정적인 가격변화를 보이고 있다. 이렇듯 경제성과 PC 말뚝의 단점을 보완한 PHC말뚝은 국내 건축 현장에서 주로 사용되고 있으며 토목현장에서는 하중 조건이 단순한 경우, 즉 말뚝두부에 모멘트가 작용하지 않은 경우에 제한적으로 사용되고 있는 실정이다.

제안된 HCP는 토목공사현장에서 주로 사용되는 강관말뚝을 대신할 수 있도록 고안하였다. 일반적으로 토목현장에서 적용되고 있는 강관말뚝 상부에는 수평력에 의해 모멘트가 작용 하고 이러한 모멘트 때문에 말뚝상부에 인장응력이 작용한다. 콘크리트 말뚝의 경우 인장 응력이 작용하게 되면 인장응력에 취약한 콘크리트말뚝의 특성 때문에 구조적으로 불리하 다. 하지만 강관말뚝에 작용하는 모멘트는 말뚝상부에서는 크게 작용하지만 말뚝하부로 내 려갈수록 모멘트 분포는 급격하게 감소하게 된다. 이러한 말뚝 길이에 따른 모멘트의 분포 를 그린 것이 [그림 1.1]이다.

개요도

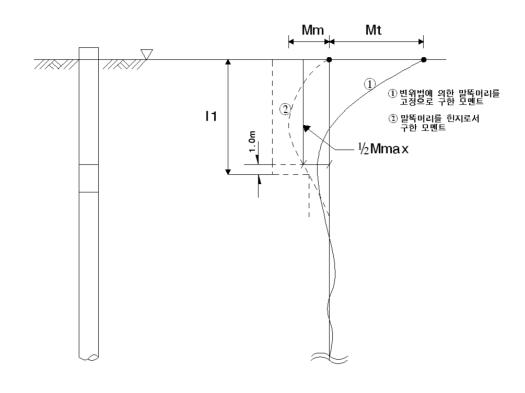
[그림 1.1]

그림에서 보는바와 같이 모멘트가 크게 작용하는 말뚝의 상부는 모멘트 저항능력이 뛰어난 강관말뚝으로, 압축력이 주로 작용하는 하부는 콘크리트 말뚝인 고강도 콘크리트말뚝 (PHC)으로 구성하고 용접으로 연결시켜 복합 말뚝형태로 말뚝을 합성시킴으로써 2가지 재료의 장점을 최대한 활용하여 경제성 및 말뚝기초의 안정성을 확보하는 것이 HCP의 주요특징이다.

1.3 HCP 구성

1.3.1 상부강관말뚝 길이 결정

지중에 설치되어있는 말뚝두부에 수평하중이 작용하는 경우 말뚝의 수평저항인 변형 응력분포를 보다 정확하게 평가하는 것은 매우 중요하다. 실제로 말뚝은 지중에서 3차원의 연속체로 모델링 하여야 하지만 해석상에 어려움이 많아 통상적으로 지반을 탄성체로 가정하고 말뚝을 탄성체위의 Beam으로 모델링하여 지반반력법에 의해서 계산하는 것이 일반적이다.


이런 지반반력법을 이용한 해석방법이 이해하기 쉽고 해석도 쉽기 때문에 현재 가장 일 반적으로 사용되고 있지만 해석에 중요한 인자로 들어가는 지반반력계수 (k_v) 가 단순히 지반의 특성 값이 아니므로 해석시 주의가 요구된다. 국내에서는 지반반력계수 (k_v) 값이 지표면에서 깊이에 따라 일정하고 말뚝의 길이가 무한하다고 가정하여 지반반력법을 단 순화시킨 Chang방법들이 도로교설계기준등에 설계기준으로 적용되고 있다.

일반적으로 수직으로 설치된 말뚝에 작용하는 수평저항은 크게 두가지 방법으로 나눌 수 있다. 즉, 극한수평저항력을 계산하는 방법과 작용하중조건에서 허용변위량을 계산하는 방법이다. 극한수평저항력을 계산하는 방법에는 Hansen's Method(1961)과 Broms's Method(1964)이 있는데 이러한 방법들은 순수한 점성토나 사질토 지반에서만 적용이 가능하고 층이 구분된 지층에서는 적용할 수 없는 한계가 있다. 허용변위량을 계산하는 방법에는 지반을 서로 독립된 여러개의 스프링으로 가정하여 해석하는 방법인 Reese and Matlock Method(1956), Chang Method(1961)으로 지반반력법이라 한다. 또한, 지반을 이상적인 연속 탄성체로 가정하는 방법인 탄성적 접근방법인 Poulos(1971)방법이 있는데 앞에서 설명한 것처럼 지반반력이 국내에서는 많이 적용되고 있지만 흙의 연속성을 충분히 고려할 수 없을 뿐만 아니라 지반반력계수는 기초의 크기나 변형등에 영향을 받는 것으로 알려져 있어 신뢰성 있는 해석을 위해서는 흙과 말뚝의 상호작용을 폭넓게 이해할 필요가 있다.

Reese(1974, 1975, 1977)는 지반반력법을 흙이 탄성변형 범위를 넘어 소성상태을 고려할수 있는 p-y곡선을 이용하는 방법을 제안하였다. 이 곡선은 비선형이며 지반의 깊이, 지반의 강도, 하중의 반복횟수 등에 영향을 받는다. Reese Method는 수평력을 받는 말뚝해석에 다른 해석방법보다도 다층지반조건에서도 적용이 가능하므로 말뚝과 흙의 상호작용을 합리적으로 산정한 방법으로 HCP 해석에 적용하였다. [그림 1.2]는 전형적인 Reese방법을 이용한 말뚝깊이에 따른 모멘트 분포를 그린 것이다.

(2) 말뚝연결부의 위치

일본도로협회에서 발간된 杭基礎設計便覽(항기초설계편람, 2004)에서의 말뚝단면변화와 위치에 대한 기준은 다음과 같다.

[그림 1.2]

즉, 말뚝단면이 변하는 최소길이는 최대모멘트(M_{max})가 발생하는 위치의 1/2 이하로 규정하고 있다. HCP인 경우 엄격하게 말하면 말뚝의 단면 변화라 볼수 없지만 결국 말뚝의 단면 변화가 말뚝의 강성변화와 관련이 있기 때문에 강관말뚝에서 콘크리트 말뚝으로의 강성변화시 이러한 기준을 적용하는 것은 타당한 것으로 판단된다. 일본의 말뚝기초의 조사, 설계에서 시공까지(토질공학회, 1990)에서는 말뚝단면이 변하는 최소길이(l_1)은

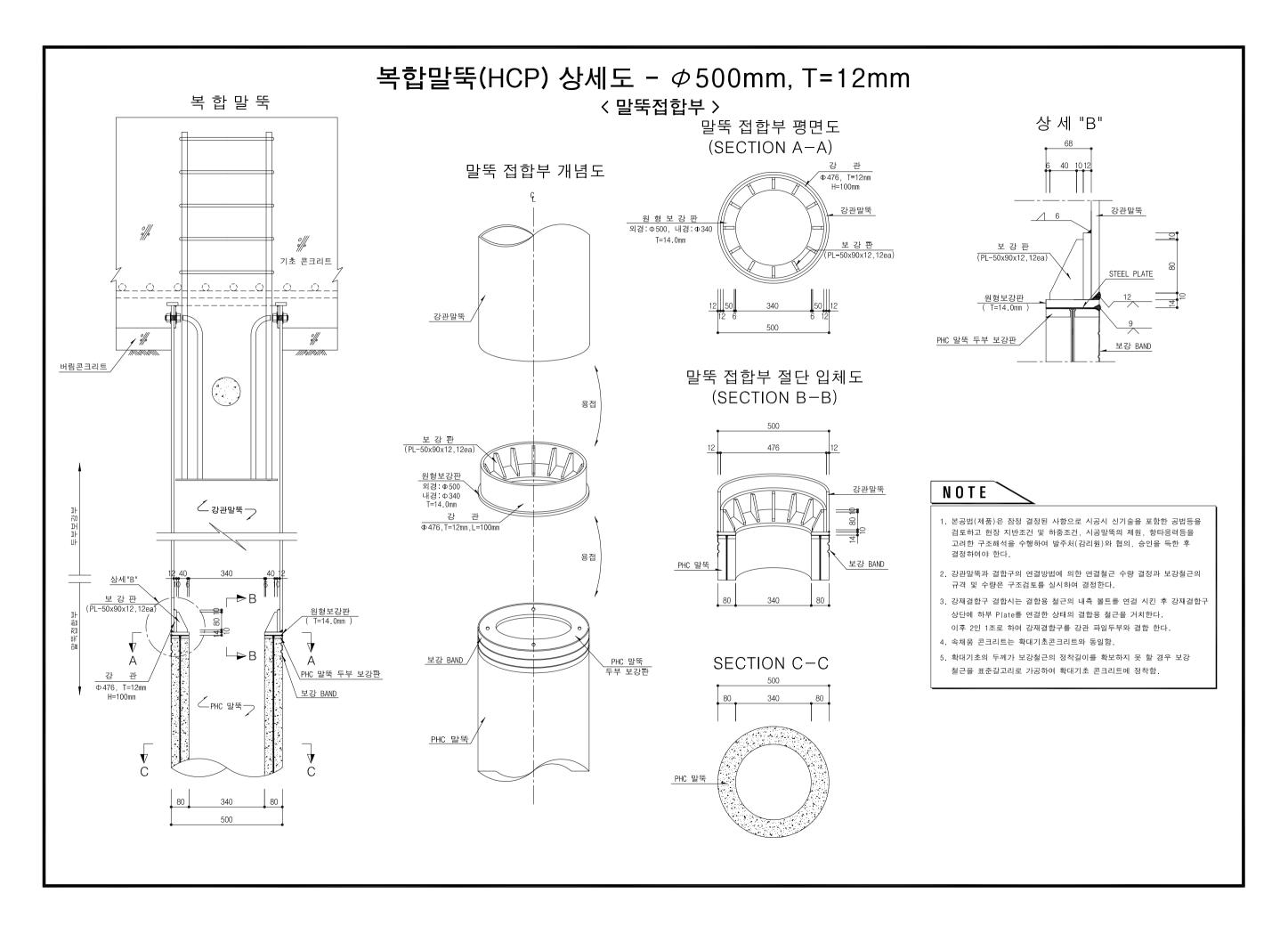
$$l_1 = \frac{1}{2}M_{\text{max}} + 1.0 \ (m)$$
 -----(1)

로 말뚝단면 변화에 대한 언급이 있었으며, 도로설계요령(제3권, 한국도로공사, 2001)에서 도 말뚝단면이 변하는 최소길이(l_1)을 윗식을 적용하고 있다. 그러므로 HCP의 강관말뚝과 콘크리트 연결부의 위치는 국내규정인 "도로설계요령"을 따라 보다 보수적으로 기초 한부로부터 $l_1=\frac{1}{2}M_{\max}+1.0~(m)$ 를 적용하였다.

1.3.2 HCP 연결부

말뚝시공법의 기원은 항타말뚝에서부터 시작되었으며 대부분의 말뚝의 지지력공식 역시 항타말뚝을 기본으로 유도 되었다. 최근에 들어 이러한 항타말뚝이 소음, 진동등 환경문제로 인해 매입말뚝 형식으로 바뀌어가고 있는 실정이지만 기본적으로 말뚝이 항타 할수 없다면 현장 적용에 많은 한계가 있는 것이 사실이다. 그러므로 HCP말뚝도 기본적으로 항타공법에 적용할 수 있는 개념으로 개발되었다.

항타시 말뚝의 관입성은 재료의 강도와 직접적인 연관이 있다. 해머로 말뚝항타시 말뚝에 작용하는 항타응력은 재료의 강도 이하로 관리되면서 최대한 관입이 이루어져야 최대한 말뚝지지력을 발휘 할 수 있다. 일반적으로 강관말뚝의 최대 항타응력은 재료 항복응력(σ_y)의 90% 정도를 보고 있다. 반면 콘크리트 말뚝의 경우 말뚝에 적용하는 인장응력의 크기와 콘크리트의 압축강도에 영향을 받은 것으로 알려져 있다(AASHTO, 1983). 국내에 사용되고 있는 고강도 콘크리트 말뚝(PHC)의 A-type 인 경우 최대 항타 압축응력은 AASHTO 기준에 따르면 640kgf/cm²인 반면 보통강(SKK400)의 강관말뚝인 경우 2160kgf/cm²의 항타응력을 허용 할 수 있다.


만일 HCP를 위해 φ508-12t 강관말뚝과 φ500 PHC말뚝을 사용하는 경우에 대해 항타응력을 표로 나타내면 [표 1.1]와 같다.

[표 1.1] 말뚝제원 및 허용항타응력

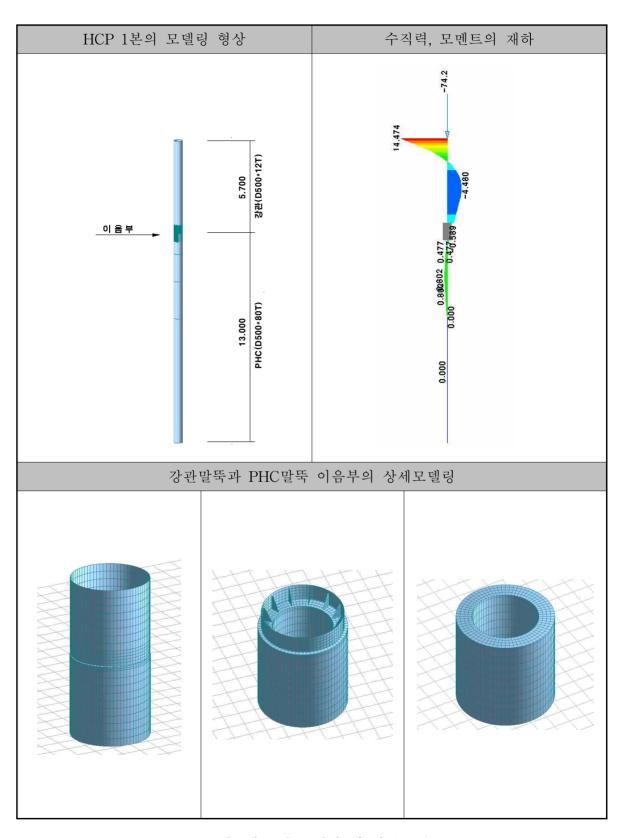
말뚝 type	강관말뚝(φ508-12t)	고강도콘크리트말뚝(ф500 A-type)
허용항타응력 압축응력(kgf/c㎡)	$0.9\sigma_{y}(2160)$	0.85f'c-유효프리스트레스 640
순단면적(cm²)	187	1,056
최대항타력(ton)	403	675

말뚝항타시 HCP의 경우 상부의 강관말뚝을 항타하게 되고 강관말뚝에 전달되는 압축파는 하부의 콘크리트 말뚝으로 전달되게 된다. 강관말뚝과 콘크리트말뚝의 접속부는 단면적의 차이로 인해 강관말뚝에 의해 전달되는 항타하중으로 인해 콘크리트말뚝에 응력집중이 발생하므로 콘크리트 말뚝의 손상을 야기시킬 수 있다. 그러므로 강관말뚝에 전달되는 항타하중을 콘크리트 말뚝 두부면에 일정하게 분산시킬 필요가 있다. [표 1.1]에서보는 바와 같이 실제 강관말뚝에 작용하는 하중을 콘크리트 말뚝 두부면에 균등하게 분

산시킬 수 만 있다면 콘크리트 말뚝의 파손은 발생하지 않을 것이다. 이는 콘크리트 말뚝의 단면적이 강관말뚝의 단면적보다 훨씬 크기 때문이다. 그러므로 이러한 콘크리트 말뚝에 전달되는 하중을 분산시킬 수 있도록 강관말뚝 선단에 강재로 구성된 강관 결합구를 부착시키므로 말뚝 연결부의 보강뿐만 아니라 하중을 분산시켜 말뚝연결부의 안전성과 모멘트나 수평하중에 대해 저항할 수 있도록 고안하였다. 이러한 연결부위에 대한상세도면은 [그림 1.3]과 같다. 그러므로 본 연구성과 보고서는 HCP연결부에 대한 수치해석을 통해 연결부 구조의 적정성을 판단하고 시험항타 중 PDA(Pile Driving Analyzer)의 항타응력을 측정하고 또 Bending과 인발 시험을 수행하여 연결부에 대한건전성을 확인하는 것이 본 과업의 목적이다.

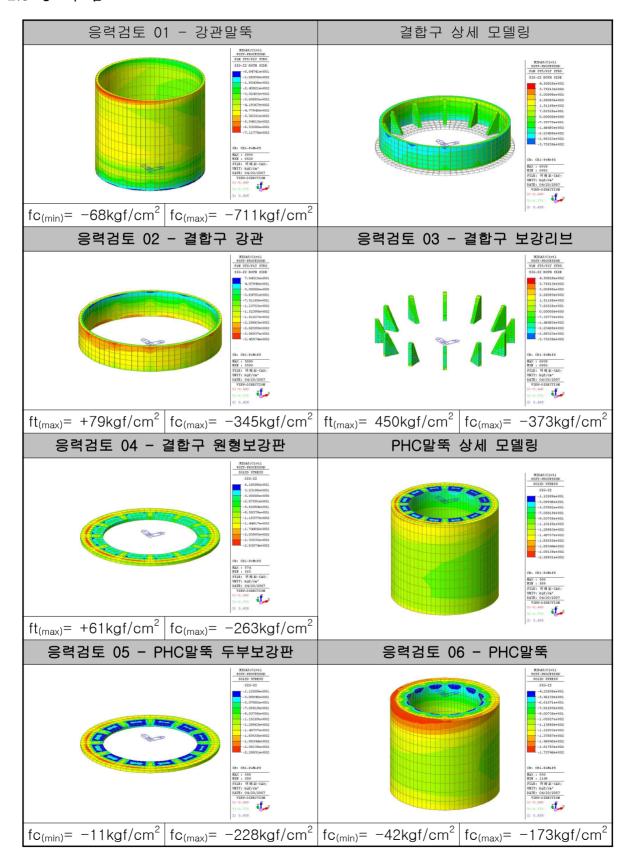
제 2장 이음부 상세해석

2.1 개 요


HCP(Hybrid Composite Pile)는 서로 다른 재질과 강성을 가진 재료(강관말뚝과 PHC말뚝) 가 결합되어 일체로 거동해야 하므로 결합 및 결합부 보강 방법에 따른 HCP의 구조적 안전성과 이음부 보강방법의 적정성 확인을 위하여 실제와 유사하게 모델링한 후 FEM 해석으로 HCP의 거동에 따른 응력을 파악하여 이음부의 안전성을 검토하였다.

2.2 해석모델 및 하중조건

이음위치를 중심으로 상,하 각 50cm를 판요소 및 입체요소로 모델링하고, 그 외 상부 강관 말뚝과 하부 PHC말뚝은 FRAME요소로 모델링하여 이음부의 상세해석을 수행하였다. PHC말뚝의 Prestress 40kgf/cm²은 PHC말뚝두부 입체요소의 cm²당 40kgf를 수직력으로 재하하여 작용시켰다. 말뚝의 상세제원은 [표 2.1]과 같으며, 모델링 및 하중조건은 [그림 2.1]와 같다.


[표 2.1] 말뚝제원

구 분	강관말뚝	PHC말뚝	결합구- 강 관	결합구- 보강리브	결 합 구- 원형보강판, PHC말뚝- 두부보강판
재 질	SKK400	fck=800 kgf/cm ²	SS400	SS400	SS400
규 격 (mm)	D500*12T	D500*80T A-TYPE	D476*12T	50*90*12T -12EA	D340~500 *12T
길 이 (m)	5.7	13.0	0.1	-	_
탄성계수 (kgf/cm²)	2,100,000	365,980	2,100,000	2,100,000	2,100,000
단면계수 (cm ⁴)	54,800	241,200	_	_	_

[그림 2.1] 모델링 및 하중조건

2.3 응 력 검 토

[표 2.2] 해석결과

구 분	허용응력 (kgf/cm²)	작용· (kgf/	_	비고
응력검토 01		-68	O.K	
-강관말뚝		-711	O.K	
응력검토 02		+79	O.K	
-결합구 강 관	1 400	-345	O.K	
응력검토 03	+1400 ~	+450	O.K	
- 결합구 보강리브	-1400	-373	O.K	
응력검토 04	-1400	+61	O.K	
- 결합구원형보강판		-263	O.K	
응력검토 05		-11	O.K	
- PHC말뚝 두부보강판		-228	O.K	
응력검토 06	+10 ~	-42	O.K	
- PHC말뚝	-200	-173	O.K	

2.4 검 토 결 과

강관말뚝 및 결합구등 강재에 작용하는 응력이 재료의 허용응력에 만족하고, PHC말뚝의 상단 외측부(강관말뚝 하중 전달부)에 작용하는 최대압축응력이 173 kgf/cm²으로 허용응력 인 200 kgf/cm²에 87% 정도로 만족하는 것으로 검토되었다.

따라서 수직력, 수평력, 모멘트의 작용에 따른 HCP 이음부의 보강 및 결합방법의 안전성이 확보된 것으로 판단된다.

제 3장 HCP 시험항타

3.1 시험의 목적

말뚝은 보통 시공방법이나 재료에 의해 분류하는데, 시공방법은 국내에서 일반적으로 사용되고 있는 항타와 매입 또는 현장타설로 구분할 수 있다.

HCP의 시공방법은 항타와 매입이 있을 수 있다. 국내의 말뚝시공현황이 환경문제인 진동·소음으로 인해 항타말뚝에서 매입말뚝으로 그 추세가 이동하고 있지만 HCP가 항타성에 문제가 있다면 HCP의 적용성은 많은 제약이 따를 것으로 판단된다. 그러므로 HCP가 항타관입성에 문제가 없어야 함은 물론 강관말뚝과 콘크리트 말뚝이 접합되는 접합부 역시항타응력에 의한 파손이 없어야 HCP의 현장 적용성은 문제가 없이 확대 될 수 있을 것으로 판단된다. 이러한 문제를 해소하기 위하여 HCP의 관입성은 물론 항타시 강관말뚝과 콘크리트 말뚝 연결부에 발생하는 항타응력을 측정하여 말뚝의 건전성 확보는 물론 항타시지지력 확보를 위한 관입성을 중심으로 HCP의 시험항타를 수행하였다.

3.2 시험항타의 지반조건

시험항타전 시항타 현장의 지반조건을 파악하기 위하여 지반조사를 수행하였다. 기반암은 지표면으로부터 11.0m에 위치하며 지표면에서부터 매립층, 붕적층, 풍화토층으로 구성되었다. 이 지역은 외곽순환도로 목감IC 인근으로 현재는 창고부지로 사용되고 있으며 이전에는 산지 내지는 농지로 사용했던 지역을 창고부지로 조성하기 위해 상부에 성토를 한 지역이다. 이러한 지반조건을 보인 것이 [그림 3.1]이다.

추 주 상 人 도

DRILL LOG

페이지 : 1 중 1 페이지 (주) 시료채취방법의 기호 공번 공 사 명 REMARKS BH-1 북합말뚝 시험시공 지반조사 HOLE No. 자연시료 **PROJECT** U.D.SAMPLE 지반표고 - U.U.SAMPLE 표준관입시험에 의한 시료 S.P.T. SAMPLE 0 M ELEVATION S.P.T. SAMPLE LOCATION 지하수위 (GL-) 2.8 М 코어시료 GROUND WATER CORE SAMPLE 날짜 감독자 호트러진 시료 DISTURBED SAMPLE 2006-05-22 2006-05-22 김홍근 DATE INSPECTOR 시 료 Sample 표준관입시험 표고 Scale 심도 층후 주상도 통 U Thic-kness 지 층 설 명 일 S Elev. Depth Columnar 지층명 시료 채취 채취 الرا N hlow 분 C Description М М М M 류 S 번호 방법 심도 ▶매립층 - 황갈색 - 노슨한 상태 -조밀한 상태 - 실트섞인 모래질 자갈 - 습윤 상태 매립층 S-1 1.5 40/30 GM -3.10 3.10 3.10 S-2 3.0 6/30 ▶붕적층 암갈색 보통 굳은 상태 실트질 점토 젖은 상태 붕적층 CL S-3 4.5 6/30 5.30 2.20 -5.30 ▶풍화토 S-4 6.0 15/30 - 황갈색 - 보통 조밀한 상태 -매우 조밀한 상태 - 실트질 모래 - 습윤 상태 0 7.5 19/30 S-5 풍화토 SM S-6 9.0 50/18 S-7 10.5 50/20 11.00 5.70 -11.00 ▶풍화암 풍화암 -12.00 12.00 1.00 황갈색 매우 조밀한 상태 굴진시 모래질 실트로 파쇄 심한 풍화상태 S-8 0 12.0 50/4 * 심도 12.00 M 에서 시추종료

[그림 3.1]

상부의 매립토층은 [그림 3.2]와 같이 말뚝 관입후 연결부의 건전성을 육안으로 확인하기위해 연결부까지 굴착한 후 말뚝 인근에 굴착토를 쌓아둔 것이며 그림에서 보는바와 같이 매립토층은 조립의 모래질 뿐 아니라 약간의 자갈로 구성되어있는 것을 볼 수 있다. 원지반의 잔류토(Residual soil)는 기반암이 풍화를 받아 흙으로 된 지층으로 표준관입시험의 N치는 15~50이상의 견고한 지층 구성을 보이는 것으로 판단되어 고강도 콘크리트 말뚝의 경우 풍화토층까지 관입될 것으로 예상되며 실제로 말뚝의 관입깊이는 [그림 3.2]와 같이 풍화토층에 관입되었다.

[그림 3.2]

3.3 시험항타

항타시 HCP의 연결부에 항타응력의 집중 파손문제 등을 파악하기 위해 시험항타를 수행하였다. 시험말뚝의 구성은 [표 3.1]과 같다.

[표 3.1] 시험말뚝의 구성

	で子が世皇국 (Ф508-12t) ((TP-1 1.8	[이(m)		
말뚝번호	상구상판발국 코크린E		관입깊이	비고
TP-1	1.8	8.0	9.8	
TP-2	1.8	7.0	8.8	

시험말뚝은 7ton 유압해머로 낙하고는 최대 1.2m로 HCP를 항타 관입하였는데, 항타관입중 PDA(Pile Driving Analyzer)을 이용 항타응력을 측정하였다. PDA는 항타중 말뚝에 작용하는 항타에너지, 항타응력, 손상부위 측정, 말뚝의 지지력 등을 측정 또는 계산할 수 있으므로 말뚝의 관입성, 지지력등을 평가하는데 유용하게 활용할 수 있는 장점이 있다. 항타중 게이지인 변형률계, 가속도계 등을 처음에는 콘크리트 말뚝에 부착하였다가 말뚝이 어느정도 관입되면 강관말뚝에 부착하여 말뚝의 지지력 특성 등을 파악하기 위한 시험인 EOID(End of Initial Driving)를 수행하였다. 이러한 시험 내용을 요약한 것이 [표 3.2]와 같다.

[표 3.2] 시험내용 요약

말뚝번호	게이지 부 착 위 치	시험구분	시험시 관입깊이(m)	낙하고(m)	타격당 관입량 (mm/打)	비고
TP-1	РНС	EOID	0.0~7.8	0.2~	~12	
117-1	STEEL	(End of	7.8~9.4	최대(1.2)	12~6	
mp o	РНС	Initial	0.0~5.8	0.2~0.5	~10	
TP-2	STEEL	Driving)	5.8~8.0	0.2~(최대)1.2	10~5	

HCP는 상부의 강관말뚝과 하부 콘크리트 말뚝의 이질의 재료를 이용하여 복합말뚝형태로 이루어져 있으므로 PDA시험결과를 평가할 때 간편분석법인 Case Method을 이용하는 경우에는 지지력 계산시 오류가 발생하므로 시험결과의 신뢰성에 문제가 될 수 있다. 이러한 이질의 재료로 구성된 복합말뚝의 경우 이질재료에 따른 물성치(Impendence)를 신뢰성있게 평가하기 위하여 정밀해석방법인 CAPWAP(Case Pile Wave Analysis Program)방법으로 분석하여 지지력, 항타응력을 평가하였다. 이 결과를 요약한 것이 [표 3.3]이다. CAPWAP 분석내용은 부록에 첨부하였다.

[표 3.3] CAPWAP 분석결과

시험	만뚜 브 차 ^{긴 ㅂ}	관입 라격당 교		FMX CSX		TSX	CAPW	비고			
번호	위치	깊 이 (m)	(mm/打)	(tonf-m)	(tonf)	(tonf/cm ²)	(tonf/cm ²)	주면 마찰력	선단 지지력	전체 지지력	
	PHC	7.8	12	6.7	442	0.435	0.017	50.0	181.0	231.0	
TP-1	STEEL	7.8	12	6.9	420	1.235	0.039	50.8	181.2	232.0	
	SIEEL	9.4	6	6.7	398	1.148	0.048	64.5	267.5	331.9	
	PHC	5.8	10	2.2	253	0.238	0.014	7.8	38.2	46.0	
TP-2	CTEEL	5.8	10	2.2	261	0.748	0.047	11.0	40.0	51.0	
	STEEL	8.0	5	6.5	457	1.319	0.044	56.0	210.0	266.0	

- 註) 1. EMX: 게이지부착위치에서의 항타에너지
 - 2. FMX: 게이지부착위치에서의 최대 타격력(MAX. Force).
 - 3. CSX: 최대압축응력(게이지 부착 위치에서의 최대압축응력)
 - 4. TSX: 말뚝전길이에서의 최대인장응력
 - 5. 최종관입량은 현장에서 측정된 값임

[표 3.3]에서 CAPWAP지지력이란 말뚝 시공종료시 지지력으로 일반적으로 말뚝의 지지력은 시간의 경과에 따라 변화하는데 말뚝의 지지력이 시간의 경과에 따라 증가하는 현상을 "Set-up"이라 하고 말뚝의 지지력이 시간의 경과에 따라 감소하는 현상을 "Relaxation"이라한다. 하지만 [표 3.3]의 CAPWAP 지지력은 이러한 시간경과효과(Time Effect)를 고려

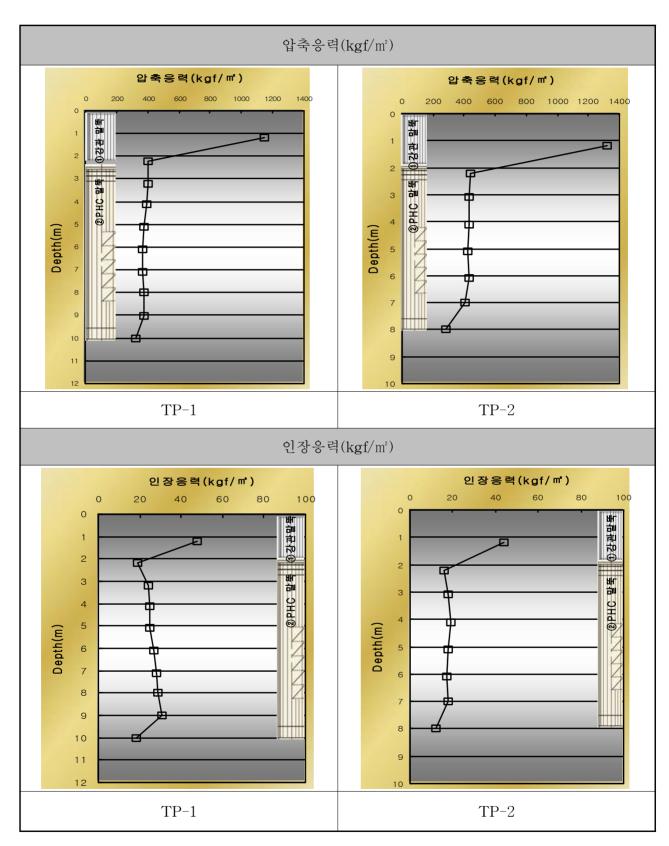
하지 않는 지지력값으로 지반조건으로 판단하였을 경우 Set-up이 기대되는 지반으로 평가된다. 말뚝에 작용하는 항타응력은 항타기의 에너지 효율 뿐아니라 램 낙하고등에 의해 따라 달리 작용된다. 항타기의 에너지 효율(ER)은 실제 말뚝두부에 전달되는 에너지와 이론적 에너지의 비를 말한다. [표 3.3]에서 와 같이 말뚝항타시 말뚝에서 PDA에 측정된 에너지는 2.2~6.9tf·m로 말뚝의 심도에 따라 다른 것을 볼 수 있다. 측정된 최대에너지로 볼때이론적 에너지는 7 × 1.1 = 7.7tf·m이고 실제 전달된 에너지는 6.7tf·m이므로 본 시항타에서 적용된 항타기의 에너지효율은 최대 95%이상으로 일반적으로 국내에서 사용되고 있는 유압항타기의 에너지 효율이 콘크리트 말뚝항타시 70%~80%와 비교하여 보면 본 시항타에서 사용한 유압해머는 최대에너지 효율 90%이상으로 평가되었는데 이는 강관말뚝 항타시 콘크리트말뚝 상부에 쿠션재를 둘 필요가 없어 직접적으로 항타에너지가 말뚝으로 전달되기 때문인 것으로 판단된다. 이러한 항타에너지로 말뚝관입시 최종관입량(final set)을 [그림 3.3] 같이 측정하였다.

[그림 3.3]

그림에서 보는바와 같이 최종 관입량은 거의 1~2mm/blow로 관리되어 일종의 과잉항타인 것으로 평가되자만 실제로 말뚝에 작용하는 항타응력은 AASHTO에 정한 프리텐션 콘크리트 말뚝의 기준치인 640 kgf/cm² 보다 훨씬 작은 것으로 평가되어 말뚝의 건전성에는 아무런 문제가 없는 것으로 판단된다. 또한 상부의 강관말뚝의 경우에도 강관말뚝의 항타응력이 재료의 항복강도의 90%까지 허용하는 것으로 판단해 볼 때 강관말뚝의 허용항타응력은 2160kgf/cm²으로 [표 3.3]에서와 같이 항타응력은 많은 여유가 있는 것으로 판단되어

말뚝의 건전도에는 아무런 문제가 없는 것으로 평가되었고 PHC말뚝에서도 최대항타응력이 435kgf/c㎡으로 한국도로공사와 AASHTO에서 제시한 허용응력 기준을 만족하였다.

[표 3.4] PHC말뚝의 최대항타응력


말뚝번호	콘크리트 말뚝의 압축항타응력(kgf/c㎡)	항타에너지(tf·m)	한계압축응력 (kgf/c㎡)	비고
TP-1	435	6.7	480/640	도고공사 /
TP-2	238	2.2	480/640	AASHTO

^{*} AASHTO의 PHC말뚝에 대한 한계압축응력: 640kgf/cm²

본 연구에서는 항타응력을 동일한 타격에 강관말뚝과 콘크리트말뚝에 따로 게이지를 붙여 2대의 PDA로 시험을 수행하지 못하여 동일한 타격에 의한 항타응력의 변화가 이질말뚝에 어떻게 전달되는지를 평가하지 못한 부분이 있어 다음 연구를 위해 동일한 타격에 의해 말뚝에 전달되는 항타응력이 말뚝의 단면변화 및 Impendence 변화에 어떻게 반응하는지 보다 포괄적인 연구가 추가적으로 수행되어야 할 부분으로 평가된다.

말뚝의 지지력은 본 연구과업 범위에 포함되지 않아 EOID시험 후 일정기간 경과 후에 Restrike을 수행하지 않아 시간경과효과를 고려한 말뚝의 지지력 평가는 수행되지 않았지만 CAPWAP 분석결과만으로 평가하더라도 말뚝의 지지력은 PHC φ500 A-Type 재료의 지지력인 173tonf을 상회할 것으로 판단된다.

항타중 말뚝길이에 따라 말뚝에 발생한 항타응력의 분포를 그린 것이 [그림 3.4]이다.

[그림 3.4]

그림에서 보는 바와 같이 말뚝에 작용한 항타응력은 허용치 범위 안에 있어 HCP말뚝의 관입중에 말뚝의 파손 등 말뚝의 항타관입성에 문제가 없는 것으로 판단된다. 하지만 20m 이상의 장대 말뚝에 대한 항타관입성에 대해서는 실제검토가 수행되어야겠지만 상부의 강관말뚝이 하부 콘크리트말뚝에 전달되는 항타응력을 감소시키는 역할을 할 뿐 아니라 콘크리트말뚝의 항타중 직접적인 파손으로 이어지는 콘크리트말뚝의 편타의 위험도 상부강관말뚝에서 감소키시므로 콘크리트말뚝만 항타하는 경우보다 항타응력이 감소하는 경향을 보이는 것으로 판단되며 이에 대한 추가적인 연구가 필요할 것으로 판단된다.

제 4장 HCP Bending 시험

4.1 시험의 목적

HCP는 콘크리트말뚝과 강관말뚝의 장점을 발휘할 수 있도록 연결한 말뚝형태로 연결부위에서의 휨저항능력을 평가하는 것은 매우 중요하다. 강관말뚝이나 콘크리트말뚝은 이미 토목현장이나 건축현장에서 검증된 말뚝재료이므로 재료에 대한 검증은 필요 없지만 연결부위는 HCP에만 있는 것으로써 연결부위에 대한 검증을 위해 Bending시험을 계획하여 수행하였다. HCP의 강관말뚝과 PHC는 용접이음을 하였으며 용접형태는 강관말뚝 선단에 강재로 구성된 강관 결합구를 삽입하여 이음부를 보강한 후 강관결합구가 삽입된 강관말뚝과 PHC를 용접으로 연결하였다.

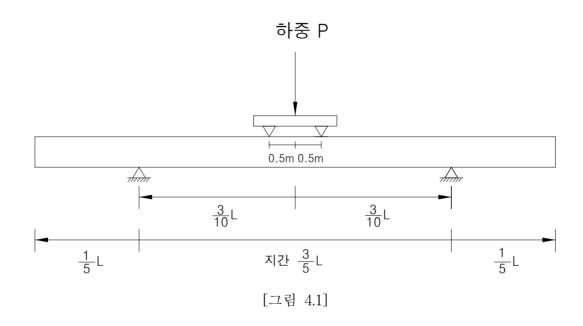
시험방법은 최대모멘트가 콘크리트말뚝의 모멘트 저항능력을 초과하는 것을 확인하기위해 콘크리트말뚝 부위에 균열이 발생할 때까지 하중을 가하여 HCP에 대한 휨능력을 평가하 였다.

4.2 시험방법

[표 4.1]은 콘크리트말뚝의 설계휨 모멘트에 대한 제원을 표시하였다.

[표 4.1] 콘크리트말뚝(PHC)의 설계 휨모멘트

외 경	두 께	두 께	두 께		기준휨모	멘트(N=0)	설계휨모	멘트(N=0)
(mm)	(mm)	종 류	균열M _{cr} (t·m)	파괴M _u (t·m)	균열M _{cr} (t·m)	파괴Mu (t·m)		
	A		10.5	15.8	11.4	17.4		
ф500	80	В	15.0	27.0	15.6	31.3		
		С	17.0	34.0	18.1	38.7		


본 시험에 사용한 말뚝은 φ500 A-Type으로 균열발생시 모멘트가 10.5 t·m이고 설계 휨모멘트는 11.4 t·m이다.

시험은 재료에 휨하중을 가하여 시험하는 휨시험으로 첫째로 재료의 휨에 대한 저항을 측정하여 재료의 휨강도, 재료의 탄성계수, 탄성에너지를 결정하기 위한 굽힘저항시험과 둘째

로 굽힘에 대한 재료의 변형성을 측정하는 재료의 전성, 연성 및 균열의 발생을 시험하는 굽힘균열시험으로 분류된다.

본 시험에서는 굽힘균열시험을 행하여 재료의 변형성을 측정하였으며 시험하중을 5단계별로 재하하여 강관과 PHC의 이음부위에 균열이 발생할 때의 하중을 기록하여 이음부에 대한 안정성을 평가하였다.

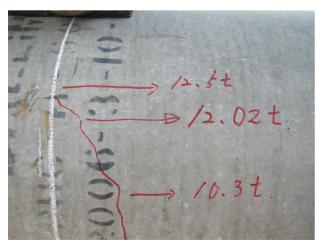
본 시험의 개요도는 [그림 4.1]과 같다.

4.3 시험결과 분석

시험조건에서 PHC의 균열모멘트는 10.5 tonf·m이며 본 시험에서는 12.86tonf·m의 모멘트 작용시 PHC표면에 미세크랙이 발생하기 시작하였고 모멘트가 증가할수록 휨균열에 의한 PHC의 파괴가 진행되었지만 강관과 PHC의 이음부에서는 16.38tonf·m의 모멘트에서도 파괴 및 균열의 정후가 없었으므로 HCP의 이음부가 PHC보다 먼저 파괴가 진행되지 않는 것을 확인할 수 있었으며 이는 HCP의 연결부에 대한 보강 및 결합방법이 휨모멘트에 대해서 안전성을 확보한 것으로 판단된다.

4.4 Bending시험 현장사진

① Bending 시험전경

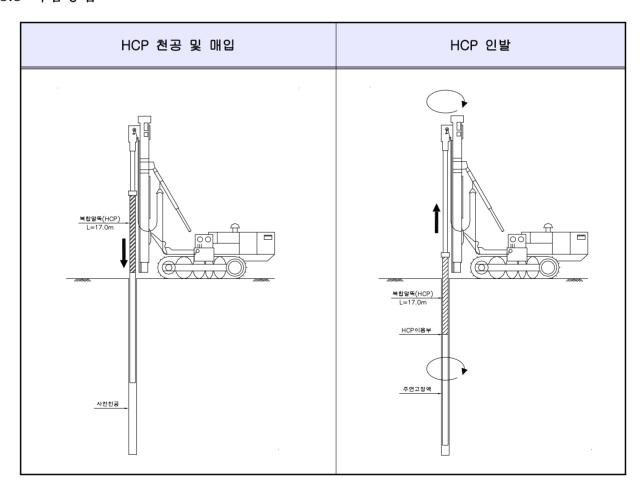

② 두점에서 하중재하

③ 시험하중 조건에 따른 균열관찰-1

④ 시험하중 조건에 따른 균열관찰-2

⑤ 시험하중 조건에 따른 균열관찰-3 ⑥ 시험하중 조건에 따른 균열관찰-4

제 5장 HCP 인발시험


5.1 시험의 목적

HCP 설치후 HCP이음부 안정성을 확인하고자 인발시험을 실시 하였으며, 시험말뚝을 제작하여 SDA공법으로 지지층에 근입시킨 후 주면고정액을 주입하고 주면마찰력이 발휘될때 AUGER의 회전력을 이용하여 말뚝을 인발하였다.

5.2 시험말뚝 구성

		길이(m)	관입깊이	
말뚝번호	경구 정신철목 이 이구 근그니트 철목		(m)	비고
시험말뚝	7.0	10.0	16.2	

5.3 시험방법

5.4 시험결과 분석

인발시험은 오거에 부착된 케이싱을 제거하고 시공된 말뚝두부와 오거를 연결한 후 오거를 좌우로 회전하면서 말뚝을 인발하였다. 그러나 HCP 인발시험중 지중에 설치된 말뚝의 파손이 발생 하였으며 파손된 말뚝을 검토한 결과 상부 강관말뚝과 이음부는 별다른 이상이 없었으나 상대적으로 인장력에 약한 PHC말뚝에 파손이 발생하였다.

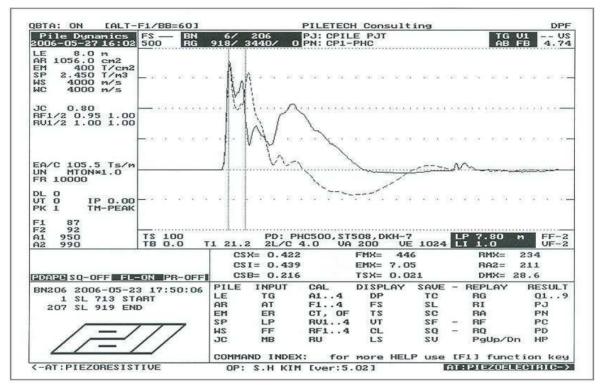
말뚝의 파손 양상을 고려할 때 회전에 의한 Torsion과 인발시 작용한 인장력에 의해 PHC 말뚝이 파손된 것으로 판단되며 이 시험을 통하여 HCP 이음부에 대한 안정성이 확보되는 것으로 확인 되었다.

5.4 인발시험 현장사진

제 6장 결 론

수치해석, 현장 항타시험, Bending시험 및 HCP 인발시험 결과 HCP말뚝의 이음부 및 항타관입력에는 문제가 없는 것으로 판단되며 용접부의 횡방향 저항력도 콘크리트말뚝 이상 확보되는 것으로 판명되었다. 또한 HCP의 경우 강관말뚝보다 경제성에서 우수하며 안전성또한 강관말뚝에 비해 크게 차이가 나지 않는 것으로 나타났다.

물론 HCP를 보완하기위한 연구와 시험은 계속 수행함으로써 다각도로 HCP의 안전성을 검증할 뿐만 아니라 횡방향 저항을 하는 말뚝의 경우 말뚝의 설계인자, 즉 말뚝본수의 수직력보다는 횡력에 의해 결정되기 때문에 횡력에 대한 저항능력을 크게 하는 방법이 말뚝본수의 감소 뿐 아니라 경제성도 확보할 수 있으므로 이에 대한 연구도 추진할 계획에 있다.

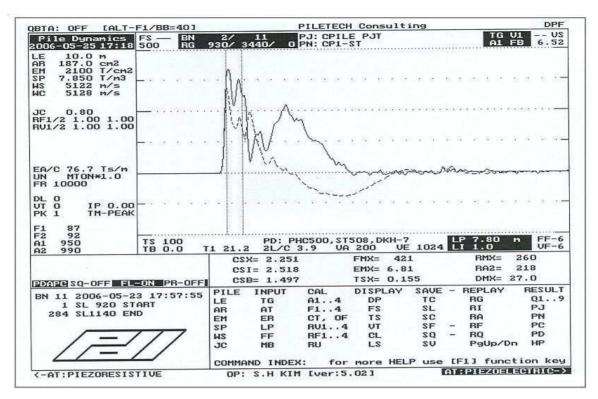

다음은 이후 연구할 항목을 정리한 것이다.

- 강관말뚝을 콘크리트와 합성(RC, PC)하여 수평저항력을 크게하는 방법 연구
- 강관말뚝의 단면을 변화시킴으로써 수평 저항력을 크게 하는 방법 연구
- 항타응력을 감쇄하는 방법을 연구하여 두께가 얇은 강관의 항타방법 연구

■ 부록 : CAPWAP 분석

[부 록] CAPWAP 분석

▷ CAPWAP 분석결과


<시험말뚝 번호 : TP1-PHC>

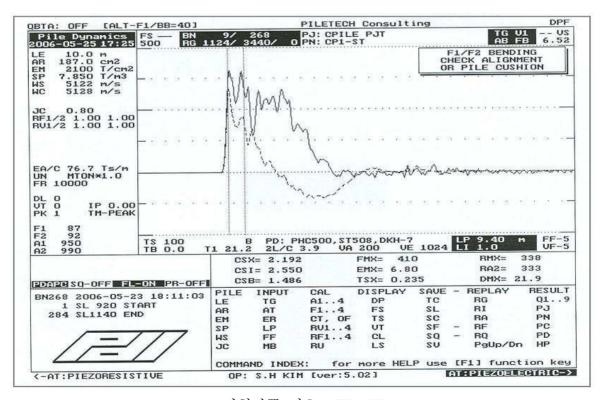
PILETE	CH Cons	sulting E	nginee	rs.				27-May-2	2006
CPILE	PJT								
Pile:	CP1-PHO	2	Blow:	206	Data:	PHC500	ST508, D	KH-7	
Collec	ted: 06	C 5-05-23	Opera	ator: S.H	KIM	CAI	PWAP(R)	Ver. 199	97-1
				WAP FINA					
	G3 D113 D	a						72 72 72 72 72 72 72 72 72 72 72 72 72 7	2 227
		Capacity							
Soil	Dist	Depth	R11	Force	Sum	Unit F	Resist	Smith	Onake
		Below							
No.	Gages	Grade							
	m	m	Tons	at Ru Tons	Tons	Tons/m	Tons/m2	s/m	mm
				231.0					
1	2.0	1.8 2.8 3.8 4.8	7.8	223.2	7.8	7.84	4.99	.632	2.540
1 2 3 4	3.0	2.8	4.5	218.7	12.3	4.48	2.85	.632	2.540
3	4.0	3.8	6.4	212.3	18.7	6.36	4.05	.632	2.540
4		4.8	7.1	205.2	25.8	7.09	4.51	.632	15.000
5 6	6.0			197.9					
6 7	7.0			189.5					
7	8.0	7.8	8.5	181.0	50.0	8.51	5.41	.632	2.540
Averag	e Skin	Values	7.1			6.41	4.55	.632	4.307
	Toe		181.0				923.47	.082	22.783
Soil M	odel Pa	arameters	/Extens	ions		5	Skin	Toe	
Case D	amping	Factor					.300	.140	
Unload	ing Qua	ake rel	(% of]	oading qu	uake)		89	65	
Unload	ing Lev	rel	(% of F	lu)			75		
Soil P	lug Wei	.ght	(Tons)					.28	

<시험말뚝 번호 : TP1-PHC>

CPILE	ייד ח								
			Dl ou	206	81	Data. Du	C500,ST50	ס חצט ס	
Collec	tod. Of	0E 22	DIOM:	zuo	C U VI	vata: Fr	C300,5130	(R) Ver. 1	007 1
COTTEC	Lea: 06	-05-23	ober	acor:	S.H KII	M.	CAPWAP	(K) VEL, I	997-1
				EX	rrema t	ABLE			
Pile	Dist.	max.	n	nin.	max.	max	. max	. max.	max.
Sgmnt	Below	Force	Fo	orce	Comp.	Tensio	n Trnsfo	. Veloc.	Displ.
No.	Gages				Stress	Stres	s Energ	1Y	372
	m	Tons	1	ons To	ons/cm2	Tons/cm	2 Tons-n	n m/s	mm
1	1.0	449.3	-31	4.7	.425	01	4 6.7	3 4.0	26.519
2	2.0	459.1			.435				26.047
3	3.0	441.8		3.6	.418		(I)	.0 4.3	
4	4.0	437.0	-1	2.5		01			25.165
5	5.0	426.5	1	9.3	.404		9 5.3	0 4.0	24.728
6	6 0	112 9	12	9.7			9 4.8	3 4.1	24.295
8	8.0	243.5	1.70 1.70	1.5		00	1 3.2	1 5.3	23.427
									NEASON V
Absolute	2.0				.435	01	7 (1	C= 21.8 C= 61.3	ms)
				CAS	SE METHO	DD			
	J=0.0	.T=0 1	T-0 2	.T=0	3 .T=0 4	4 .T=0 5	J=0 6	J=0.7 J=0	0 = T, 8 O
RS1	360.	310.			158	107.	56.	5.	0. 0
RMX	360.	310.	259	252	249	. 247.	245.		42. 241
RSU	0.					. 0.		0.	0. 0
RAU	205.	RA2	212.						
Current	CAPWAP	Ru= 23	31.0;	Con	rrespond	ding J(R	s)= .26;	J(Rx)=1	.00
					20	30			
VMX 4.18		VT1*Z 441.3		FM		X DFN 5 9.734			RLT RE 63. 537
4.10	.15	441.5 '	±20.U	442.	27.07	3 3.734	6.7	3.0 3	05. 557
			PILE	PROFIL	LE AND I	PILE MOD	EL		
Dej	oth	Area	a	E-Mod	dulus	Spec. 1	Weight	Circumf.	
	m	cm2	2	Tons	s/cm2	To	ns/ m3	m	
	.00	1056.00	0		399.6		2.450	1.571	
	.00	1056.00			399.6		2.450	1.571	
Toe Are	ea .	L96 m2							
Top Seg	gment Le	ength	1.00	meter,	Top It	mpedance	105.49	Tons/m/s	

<시험말뚝 번호 : TP1-PHC>

<시험말뚝 번호 : TP1-ST>


PILETECH Consulting Engineers						27-May-2006			
	CP1-ST			ll ator: S.H					7-1
			CAI	PWAP FINA	L RESULT	'S			
				32.0; alon					
Sgmnt	Below	Below		Force in Pile	Sum of Ru	w. Resp	Resist.	Damping	Quake
No.	Gages m	Grade m	Tons	at Ru Tons		Depth	Area Tons/m2		mr
				232.0					
1 2	4.1	1.9	6.6	225.4	6.6	6.79	4.32	.663	2.540
2	5.1	2.9	6.9	218.4	13.6	7.08	4.51		2.540
3	6.1	3.9	3.8	214.6	17.4	3.88	2.47	.663	1000-1100-1100-1100-1
	7.1	4.9	7.0	207.7	24.3	7.12	4.53	.663	2.540
5 6	8.0	5.8	7.0	200.7 193.8	31.3	7.12	4.53	.663	2.540
	9.0					7.11			2.540
7	10.0	7.8	12.5	181.2	50.8	12.79	8.14	.663	2.540
Average	Skin	Values	7.3			6.51	4.72	.663	2.540
	Toe		181.2				892.82	.195	21.664
Soil Model Parameters/Extensions						S	Skin	Toe	
Case Damping Factor			(% of loading quake)				439 75	.461-Sm:	ith Typ
Unloading Quake Unloading Level			(% of Pu)				42	20	
Soil Plug Weight							42	.35	
JULL PI	uy WEI	YIIL.	(10115)					. 22	

<시험말뚝 번호 : TP1-ST>

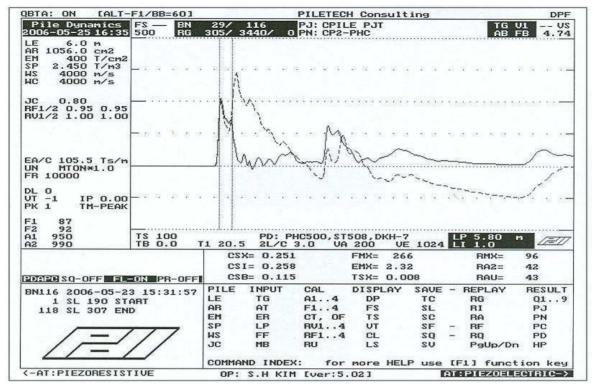
PILETE	CH Cons	ulting	Enginee	ers				27-M	ay-20	06
CPILE :			7455890							
Pile:	CP1-ST	05 00	Blow:	11	Da	ata: PHC5			1000	
Collec	ted: 06	-05-23	Oper	rator:	S.H KIN	41	CAPWAP (F	() Ver.	1997-	L
				EX	TREMA TA	ABLE				
Pile	Dist.	max			max.		max		x.	max.
	Below	Ford	ce Fo	rce	Comp.	Tension	Trnsf	l. Velo	c. D	ispl.
No.	Gages	0.000	455	2 25	Stress	Stress Tons/cm2	Energ			
	m	Tor	ns T	ons T	ons/cm2	Tons/cm2	Tons-	ı m/	s	mm
1	1.2	446.	.8 -1	4.2	1.235	039	6.7	9 4	.0 26	5.398
1 2 3	2.2	444.	2 -1	7.5	.421	- 017	6.7	4 4		5.911
3	3.2	445.	6 -1	8.8.	.422	018	6.6	9 4		5.467
4	4.1	455.		1.0	.432	020	6.6	3 4	.3 24	4.961
5	5.1	441.	.8 -1	9.6	.418	019 017	6.1	.2 4	.6 24	1.472
6	6.1	427.	.8 -1	.8.0	.405	017	5.6	.2 4 50 4 50 4		1.035
7		426.			.404	018				3.595
8		406.		.8.4	.385	017 016 014	4.8	10 4	.2 23	3.160
9	9.0	346.	0 -1	.6.6	.328	016	4.3	0 4	.9 22	2.731
10	10.0	233.	6 -1	.4.3	.221	016 014	2.9	9 5	.4 22	2.299
Absolute	1.2				1.235		(7	.= 22	.2 ms)
	1.2					039			.3 ms)	
				CA	SE METHO	OD				
	J=0.0	J=0.1	J=0.2	J=0.	3 J=0.4	1 J=0.5	J=0.6	J=0.7	J=0.8	J=0.
RS1	345.	292.	240.	187	135.	. 82.	30.	0.	0.	C
RMX						. 265.	265.	265.		
RSU	0.	0.	0.	0	0.	. 0.	0.	0.	0.	C
RAU	213.	RA2	248.							
Current	CAPWAP	Ru=	232.0;	Co	rrespond	ding J(Rs)= .21;	J(Rx)	=1.00	
VMX	VFN	VT1*Z	FT1	FM	IX DMX	K DFN	EMX	EFN	RLT	RE
4.42	03	339.1	413.8	420.	7 27.676	9.792	6.9	5.9	368.	553

<시험말뚝 번호 : TP1-ST>

		ulting Eng					-, .	lay-2006
CPILE F	357.677							
		Blo						
Collect	ed: 06	-05-23	Operator:	S.H KIN	Μ	CAPWAP (R) Ver.	1997-1
		P.	ILE PROFI	LE AND	PILE MOD	EL		
Dep	oth	Area		dulus		Weight	Circum	nf.
	m	cm2	Ton	s/cm2	To	ns/ m3		m
	00	187.00	2	100.0		7.850	1.59	16
		187.00		100.0		7.850	1.59	
1.	00	1056.00		400.0		2.450	1.57	
10.	00	1056.00		400.0		2.450	1.57	
Toe Are	a .	203 m2						
Segmnt	Dist.	Impedance	Imped.	Tens	sion	Compres	ssion	Circ
Number	B.G.	1751 17 00	Change	Slack	Eff.	Slack		
	m	Tons/m/s	%	mm		mm		1
1	1.20	82.47	.00	.000	.000	.000	.000	1.59
1 2 3	2.18	105.50	04	.000	.000	.000	.000	1.57
3	3.15	117.00	10.85	.000	.000	.000		1.57
4	4.13	105.55	.00		.000			1.57
10	10.00	105.55	.00	.000	.000	.000	.000	1.57
Dile De	mning	1.0 %, T	ime Incr	244 mc	e Wawe	Sneed 4	191 6 m/	C

<시험말뚝 번호 : TP1-ST>

PILETEC	CH Cons	sulting E	ngineer	s				27-May-	2006
CPILE P	00706008								
Pile: C	P1-ST		Blow: 2	68	Data:	PHC500,	ST508,DK	H-7	lasii ka
Collect	ed: 06	5-05-23	Opera	tor: S.H	KIM	CAP	WAP(R) V	er. 199	7-1
			CAP	WAP FINA	L RESULT	S			
Total C	CAPWAP	Capacity	: 33	1.9; alo	ng Shaft	64.	5; at To	e 267	.5 Tons
======			======			======	======	=====	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Resist.	Smith	Quake
Sgmnt	Below	Below		in Pile	of Ru	w. Res	pect to :	Damping	
No.	Gages	Below Grade		at Ru			Area		
	m	Grade m	Tons	Tons	Tons	Tons/m	Tons/m2	s/m	mm
				331.9					
1	2.2	1.6	1.9	330.0	1.9	1.91	1.21	.962	1.300
2	3.2	2.6	4.1	325.9	6.0	4.21	2.68	.962	1.300
2 3 4 5	4.1	3.5			11.2			.962	1.300
4		1 5	4.0	316 7	15.2	4.08	2.60	.962	1.300
5	6.1	5.5	3.8	313.0	18.9 21.9	3.85	2.45	.962	1.300
6	7.1	6 5	3 11	3 1 () ()	1 9	3.06	1.95	.962	1.300
7	8.0	7.4	.6	309.4	22.5	.60	.38	.962	1.300
8	9.0	8.4	18.6	290.8	41.1	19.02	12.11	.962	1.300
9	10.0	9.4	23.3	267.5	64.5	23.85	15.18	.962	1.300
Average	Skin	Values	7.2			6.86	4.66	.962	1.300
	Toe		267.5				1317.49	.169	13.389
Soil Mo	odel Pa	arameters	/Extens	ions			Skin	Toe	
		Factor					.809	.590-Sm	ith Typ
			(% of 1	oading qu	uake)			62	
Unloadi	ng Lev	<i>r</i> el	(% of R	tu)			42		
		ight						.42	

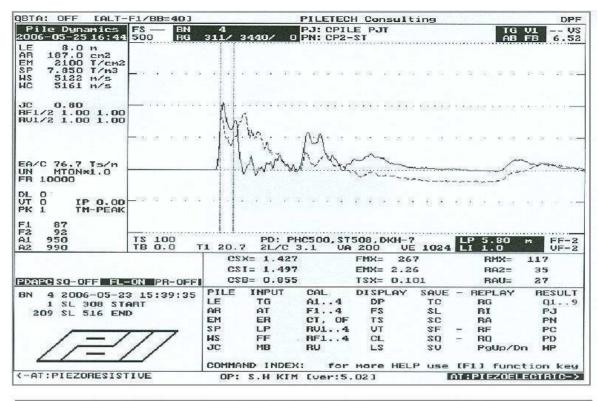

<시험말뚝 번호 : TP1-ST>

PILETE	CH Cons	ulting	Enginee	ers				27-May	-2006
CPILE :				(ANN AND SAID)	1740				
							00,ST508,		220
Collec	ted: 06	-05-23	Oper	ator:	S.H KI	M	CAPWAP(R)	Ver. 19	97-1
				EΣ	TREMA T	ABLE			
Pile	Dist.	max		nin.	max.				
Sgmnt	Below	Ford	ce Fo	orce	Comp.				Displ.
No.	Gages				Stress	Stress			
	m	Tor	ns T	ons I	Cons/cm2	Tons/cm2	Tons-m	m/s	mm
1	1.2	415		7.3	1.148	048	6.47	3.8	20.360
2	2.2	422		20.5	.400				
3	3.2	422		25.1					
4	4.1	412		6.5	.391				
5	5.1	397		6.6				3.5	
6	6.1	389		28.5					
7	7.1	390			.370				
8	8.0	393.		1.0				3.1	
9	9.0	394.		3.0	.374		4.27	3.5	
10	10.0	345	.0 -1	.9.1	.327	018	2.44	3.9	13.849
Absolute					1.148		A CONTRACTOR	22.0	
	1.2					048	(T=	48.4	ms)
				CA	SE METHO	DD			
	J=0.0	J=0.1	J=0.2	J=0.	3 J=0.4	1 J=0.5	J=0.6 J	=0.7 J=	0.8 J=0
RS1	452.	416.	380.	344	. 308	. 271.	235.	199. 1	63. 12
RMX	452.	428.	405.	381	. 360	. 356.	353.	351. 3	51. 35
RSU	0.	0.	0.	0	. 0	. 0.	0.	0.	0.
RAU	337.	RA2	354.						
Current	CAPWAP	Ru=	331.9;	Co	rrespond	ding J(Rs) = .33;	J(Rx)=1	.00
VMX	VFN	VT1*Z	FT1	FM					RLT R
4.16	03	319.3	383.3	398.	1 22.10	7 6.063	6.7	5.2 4	96. 89

<시험말뚝 번호 : TP1-ST>

PILETEC	H Cons	ulting Engi	neers				27-M	lay-2006
CPILE P	JT							
Pile: C	P1-ST	Blo	w: 268	Da	ata: PHO	C500,ST508	B,DKH-7	
Collect	ed: 06	-05-23 C	perator:	S.H KI	M	CAPWAP (I	R) Ver.	1997-1
		PI	LE PROFI	LE AND I	PILE MOI	DEL		
Dep	th	Area	E-Mo	dulus	Spec.	Weight	Circum	nf.
	m	cm2	Ton	s/cm2	To	ons/ m3		m
	00	187.00	2	100.0		7.850	1.59	6
1.	0.0	187.00	2	100.0		7.850	1.59	6
1.	00	1056.00		400.0		2.450	1.57	1
10.	00	1056.00		400.0		2.450	1.57	1
Toe Are	a .	203 m2						
		Impedance						Circ
Number	B.G.			Slack	Eff.	Slack	Eff.	
	m	Tons/m/s	%	mm		mm		τ
1	1.20	82.47	.00	.000	.000	.000	.000	1.593
1 2 3	2.18	105.55			.000	.000	.000	1.573
~	3.15	109.00	3.27	.000	.000	.000	.000	1.57
	1 12	105.55	.00		.000			1.57
	T. 13		.00	.000	.000	.000	.000	1.573

<시험말뚝 번호 : TP1-ST>


<시험말뚝 번호 : TP2-PHC>

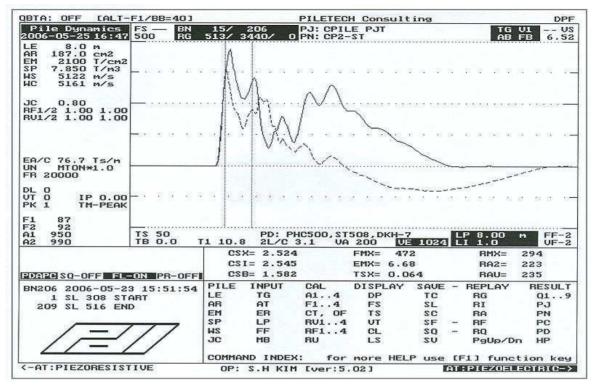
PILETE	CH Cons	sulting En	gineer	cs			9	25-May-	2006
CPILE	PUT								
Pile:	CP2-PEC		Blow:	116	Data:	PHC500,	ST508, D	KH-7	
Collec	ted: Ce	5-05-23	Opera	ator: S.H	KIM	CAF	WAP(R)	Ver. 19	97-1
			CAI	PWAP FINA	L RESULT	S			
Total	CAPWAP	Capacity:	=====	16.0; alo	ng Shaft	7.8	3; at To	e 38	.2 Tons
Soil	Dist.	Depth	Ru	Force	Sur	Unit E	Pesist	Smit's	Ouake
Samnt	Below	Below	0.000000	in Pile	of Ru	w. Resn	est to 1	Damping	yaunc
No.	Gages	Grade		at Ru		Depth	Area	Factor	
	- m	m	Tons	Tons	Tons	Tons/m	Tons/m2	s/m	mm
				46.0					
1	2.0	1.8 2.8 3.8	1.8	44.2	1.8	1.80	1.15	.781	2.300
1 2 3 4	3.0	2.8	1.1	43.1	2.9	1.14	.72	.781	2.300
3	4.0	3.8	.4	42.7	3.3	.40	.26	.781	2.300
	5.0	4.8	1.2	41.4	4.5	1.24	. 79	. 781	2.300
5	6.0	5.8	3.3	38.2	7.8	3.25	2.07	.781	8-300
Averag	e Skin	Values	1.6			1.35	1.00	.781	2.300
	Toe		38.2				194.75	.235	31.000
Scil Me	odel Pa	rameters/	Extens	Bions		S	kin	Toe	
Case Da	amping	Factor	% of 5	211)		35	059	.087	
2111260	lug nev	ght (m1	Lu,			J	.22	

<시험말뚝 번호 : TP2-PHC>

2 3 4 5 6 Absolute J= RS1 1 RMX 1	2-PHC d: 06-05 d: 06-05 d: 06-05 st. elow uges m 1.0 2.0 3.0 4.0 5.0 6.0 2.0 3.0	max. Force Tons 250.8 251.8 244.8 223.7 142.0	Ope:	min. orce Tons T -9.9 -4.3 14.6 13.5 .0	max. Comp. Stress Cons/cm2 .238 .238 .235 .232	MABLE max Tensic Stres Tons/cm 00010101	CAPWA Trns Ene Tons 9 2 4 2 4 2 3 1 0 1	P(R) Ve ax. fd. Ve rgy -m .22 .19 .00 .87 .81 .33	max. loc. m/s 3.6 3.5 3.2 3.2 3.4 3.9	997- Di 33 33 33 33 33 33 33	max. spl. mm .924 .733 .540 .354 .185
Pile: CP2 Collected Pile Di Sgmnt Be No. Ga 1 2 3 4 5 6 Absolute J= RS1 1 RMX 1	2-PHC d: 06-05 d: 06-05 d: 06-05 st. elow uges m 1.0 2.0 3.0 4.0 5.0 6.0 2.0 3.0	max. Force Tons 250.8 251.8 244.8 223.7 142.0	Ope:	min. orce Tons T -9.9 -4.3 14.6 13.5 .0	max. Comp. Stress Cons/cm2 .238 .235 .232 .212 .134	MABLE max Tensic Stres Tons/cm 00010101	CAPWA Trns Ene Tons 9 2 4 2 4 2 3 1 0 1	P(R) Ve ax. fd. Ve rgy -m .22 .19 .00 .87 .81 .33	max. loc. m/s 3.6 3.5 3.2 3.2 3.4 3.9	997- Di 33 33 33 33 33 33 33	max. spl. mm .924 .733 .540 .354 .185
Pile Di Sgmnt Be No. Ga 1 2 3 4 5 6 Absolute	.st. :low :ges m 1.0 2.0 3.0 4.0 5.0 6.0 2.0 3.0	max. Force Tons 250.8 251.8 244.8 223.7 142.0	. The Follows of the	min. orce Tons T -9.9 -4.3 14.6 13.5 .0	max. Comp. Stress Cons/cm2 .238 .235 .232 .212 .134	MARLE max Tensic Stres Tons/cm 0001010101	m Trns: Ene: 12 Tons 19 2 4 2 4 2 3 1 0 1 0 1	ax. fd. Ve rgy -m .22 .19 .00 .87 .81 .33	max. loc. m/s 3.6 3.5 3.2 3.2 3.4 3.9	Di 33 33 33 33 33 33 ms)	max. spl. mm .924 .733 .540 .354 .185
Sgmnt Be No. Ga 1 2 3 4 5 6 Absolute J= RS1 1 RMX 1	elow dges m 1.0 2.0 3.0 4.0 5.0 6.0 2.0 3.0	Tons 250.8 251.8 248.1 244.8 223.5 142.0	E F0	min. orce Tons T -9.9 -4.3 14.6 13.5 .0	max. Comp. Stress Cons/cm2 .238 .235 .232 .212 .134	max Tensic Stres Tons/cm 00 01 01 .00	on Trns Ene: 2 Tons 9	fd. Vergy -m .22 .19 .00 .87 .81 .33	3.6 3.5 3.2 3.2 3.4 3.9	Di 33 33 33 33 33 33	mm .924 .733 .540 .354 .185
Sgmnt Be No. Ga 1 2 3 4 5 6 Absolute J= RS1 1 RMX 1	elow dges m 1.0 2.0 3.0 4.0 5.0 6.0 2.0 3.0	Tons 250.8 251.8 248.1 244.8 223.5 142.0	E F0	orce Tons T -9.9 -4.3 14.6 13.5 .0 .0	Comp. Stress Cons/cm2 .238 .235 .232 .212 .134	Tensic Stres Tons/cm 00 01 01 .00 .00	on Trns Ene: 2 Tons 9	fd. Vergy -m .22 .19 .00 .87 .81 .33	3.6 3.5 3.2 3.2 3.4 3.9	Di 33 33 33 33 33 33	mm .924 .733 .540 .354 .185 .037
No. Ga 1 2 3 4 5 6 Absolute J= RS1 RMX 1	1.0 2.0 3.0 4.0 5.0 6.0 2.0 3.0	Tons 250.8 251.8 248.1 244.8 223.5 142.0	8 8 1 1 8 7 7	Tons T -9.9 -4.3 14.6 13.5 .0	Stress Cons/cm2 .238 .238 .235 .232 .212 .134	Stres Tons/cm 00 01 01 .00 .00	s Ene: 2 Tons 9 2 4 2 4 2 3 1 0 1	rgy -m .22 .19 .00 .87 .81 .33	m/s 3.6 3.5 3.2 3.2 3.4 3.9	33 33 33 33 33 33	mm .924 .733 .540 .354 .185 .037
1 2 3 4 5 6 Absolute J= RS1 1 RMX 1	m 1.0 2.0 3.0 4.0 5.0 6.0 2.0 3.0	250.8 251.8 248.1 244.8 223.7 142.0	8 8 1 8 7 7	-9.9 -4.3 14.6 13.5 .0	Cons/cm2 .238 .238 .235 .232 .212 .134	00 00 01 01 00 .00	12 Tons 19 2 14 2 14 2 13 1 10 1	-m .22 .19 .00 .87 .81 .33 (T=	3.6 3.5 3.2 3.2 3.4 3.9	33 33 33 33 33 33	.924 .733 .540 .354 .185
2 3 4 5 6 Absolute J= RS1 1 RMX 1	1.0 2.0 3.0 4.0 5.0 6.0 2.0 3.0	250.8 251.8 248.1 244.8 223.7 142.0	8 8 1 8 7 7	-9.9 -4.3 14.6 13.5 .0	.238 .238 .235 .232 .212 .134	00 00 01 01 .00 .00	9 2 4 2 4 2 3 1 0 1	.22 .19 .00 .87 .81 .33	3.6 3.5 3.2 3.2 3.4 3.9	33 33 33 33 33 33	.924 .733 .540 .354 .185
2 3 4 5 6 Absolute J= RS1 1 RMX 1	2.0 3.0 4.0 5.0 6.0 2.0 3.0	251.8 248.1 244.8 223.5 142.0	3 1 - 3 - 7 0	-4.3 14.6 13.5 .0	.238 .235 .232 .212 .134	00 01 01 .00 .00	4 2 4 2 3 1 0 1 0 1	.19 .00 .87 .81 .33	3.5 3.2 3.2 3.4 3.9	33 33 33 33 ms)	.733 .540 .354 .185
3 4 5 6 Absolute J= RS1 1 RMX 1	3.0 4.0 5.0 6.0 2.0 3.0	244.8 244.8 223.7 142.0	1 -: 3 -: 7	14.6 13.5 .0 .0	.235 .232 .212 .134	01 01 .00 .00	4 2 3 1 0 1 0 1	.00 .87 .81 .33	3.2 3.4 3.9 21.0	33 33 33 33 ms)	.540 .354 .185 .037
4 5 6 Absolute J= RS1 1 RMX 1	4.0 5.0 6.0 2.0 3.0	244.8 223.7 142.0	3 -: 7 0	13.5 .0 .0	.232 .212 .134	01 .00 .00	4 2 3 1 0 1 0 1	.00 .87 .81 .33	3.2 3.4 3.9 21.0	33 33 33 ms)	.354 .185 .037
5 6 Absolute J= RS1 1 RMX 1	5.0 6.0 2.0 3.0	223.7	7 0	.0	.238	01	0 1	.81 .33	3.4 3.9 21.0	33 33 ms)	.185 .037
6 Absolute J= RS1 1 RMX 1	6.0 2.0 3.0	142.0	0	. 0	.238	01	0 1	.33 (T=	3.9	33 ms)	.037
Absolute J= RS1 1 RMX 1	2.0 3.0				.238	01		(T=	21.0	ms)	
J= RS1 1 RMX 1	3.0 0.0 J=	0 1		CA		01					
J= RS1 1 RMX 1	0.0 J=	0 1		CA	SE METHO		4	(T=	23.3	ms)	
RS1 1 RMX 1		0 1		CA	SE METHO	DD					
RS1 1 RMX 1		0 1									
RMX 1		ULI	J = 0.2	J=0.	3 J=0.4	4 J=0.5	J=0.6	J=0.7	J=	0.8	J=0
	Control (COV) and Cov	06.	70.	34	. 0	. 0.	0.	0.		0.	
RSU	42. 1	09.	101.	93	. 89	. 87.	84.	82.		80.	7
	0.	0.	0.	0	. 0	. 0.	0.	0.		0.	(
RAU	41.	RA2	44.								
Current CA	PWAP Ru	=	46.0;	Co	rrespon	ding J(R	s)= .27	; J(R	x)=1	.00	
VMX	VFN VT	1*Z	FT1	FM	IX DM	K DFN	EMX	EFN		RLT	RI
3.50 1	.22 24	5.9	253.7	253.	7 33.842	2 33.842	2.2	2.2	1	02.	178
			PILE	PROFI	LE AND 1	PILE MOD	EL				
Depth					dulus		Weight				
m	Li .	Cn	112	1011	s/cm2	10	ns/ m3		m		
.00	1	056.0	00		379.9		2.450	1.	571		
6.00	1	056.0	00		379.9		2.450	1.	571		
Toe Area	.196	m2									
Top Segme	nt Leng	th	1.00	meter	, Top In	mpedance	102.86	6 Tons/	m/s		
Pile Damp	ina o	0 0	mi mo	Incr	256	a Warre	Sneed :	3900 0	m/e		

<시험말뚝 번호 : TP2-PHC>

PILETE	CH Con	sulting E	ngineer	s				27-May-	2006
CPILE									
Pile:	CP2-ST		Blow:	4	Data:	PHC500	ST508, D	KH-7	
Collec	ted: 0	6-05-23	Opera	tor: S.H	KIM	CAI	PWAP(R)	Ver. 19	97-1
			CAP	WAP FINA	L RESULT	S			
Total	CAPWAP	Capacity	: 5	1.0; alo	ng Shaft	11.0); at To	e 40	.0 Tons
							T	ra.m.m.m.mm.	
		DOMESTIC STATE OF THE PARTY OF	Ru	Force	Sum	Unit I	Resist.	Smith	Quake
		Below		in Pile	of Ru		pect to 1		
No.	Gages	Grade		at Ru			Area		
	m	m	Tons	Tons	Tons	Tons/m	Tons/m2	s/m	mi
				51.0					
1	4.1	1.9	3.2	47.8	3.2	3.26	2.07	.663	2.54
1 2 3 4		2.9	1 0	15 0	E 1	1 00	1 26	663	2 E4
3	6.1	3.9 4.8	1.1	44.8 43.2	6.2	1.12	.71	.663	2.54
4	7.0	4.8	1.6	43.2	7.8	1.65	1.05	.663	2.54
5	8.0	5.8	3.2	40.0	11.0	3.30	2.10	.663	2.54
Averag	e Skin	Values	2.2			1.90	1.44	.663	2.54
	Toe		40.0				197.04	.325	21.30
Soil M	odel Pa	arameters	/Extens	ions			Skin	Toe	
11			, LACOND				oznak.	100	
Case D	amping	Factor				10*	095	.170	
Unload	ing Lev	<i>r</i> el	(% of R	u)			0		
Soil P	lug We:	ight	(Tons)	.0				.33	


<시험말뚝 번호 : TP2-ST>

PILETE	CH Cons	ulting	Enginee	ers				27-	-May-20	06
CPILE			Pl ou	4	-	Data: PHC	EOO OME	OO DIII	7	
Collect	CFZ-51	05 00	DIOW:	4	C II KIN					-
COLLEC	Lea: Ub	-05-23	Oper	aLOI:	S.H KI	4	CAPWAP	(R) Vei	. 1997	-1
				EX	TREMA TA	ABLE				
Pile	Dist.	max	. n	nin.	max.	max.	ma	x. n	nax.	max.
Sgmnt	Below	Ford	e Fo	rce	Comp.	Tension	Trnsf	d. Vel	oc. D	ispl.
No.	Gages				Stress	Stress		gy		_
	m	Ton	s I	ons To	ons/cm2	Tons/cm2	Tons-	m n	n/s	mm
1	1.2	267.	8 -1	6.8	.748	047	2	19	3.1 2	7 227
1 2 3 4	2.2	264.		4.2		004				7.083
3	3.1	263.		2.5		002				6.935
4	4.1	265.	7 -	3.9						6.759
5	5.1	260.	6 -1	8.2		017				6.587
6	6.1	262.			.249	017	1.			6.425
7	7.0	245.	5	. 0	.232	.000	1.	69	3.3 2	6.284
8	8.0	170.	1	.0	.161				3.8 2	6.162
Absolute	1.2				.748		(T= 2	21.1 ms)
	1.2					047		T= 2		
				CAS	SE METHO	DD				
	J=0.0	J=0.1	J=0.2	J=0.3	3 J=0.4	J=0.5	J=0.6	J=0.7	J=0.8	J=0.
RS1	185.					25.		0.	0.	
RMX	185.	153.	121.	104.	98.	96.	94.	92.	90.	89
RSU	0.	0.	0.	0.	0.	0.	0.	0.	0.	0
RAU	42.	RA2	42.							
Current	CAPWAP	Ru=	51.0;	Con	respond	ling J(Rs)= .42;	J(Rx	2)=1.00	
VMX	VFN	VT1*Z	FT1	FMX			EMX	EFN	RLT	RE
2.92	.77	205.3	230.3	261.0	27.208	27.208	2.2	2.2	116.	173

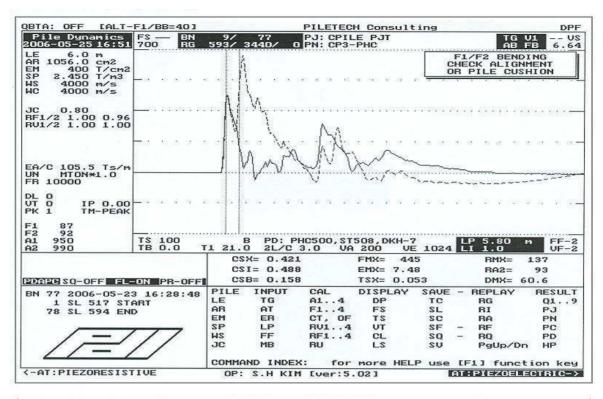
<시험말뚝 번호 : TP2-ST>

PILETEC	H Cons	ulting Eng:	Ineers				27-M	1ay-2006
CPILE P	JT							
Pile: C	P2-ST	B	ow: 4	-7	Data: PH	C500 ST5	18 DKH-7	
Collect	ed: 06	-05-23	perator:	S.H KI	1	CAPWAP	(R) Ver.	1997-1
			•				A R	
		P	LE PROFI	LE AND	PILE MOI	DEL .		
Dep	th	Area	E-Mc	dulus	Spec.	Weight	Circum	nf.
	m	cm2	Ton	s/cm2		ons/ m3		
	00	187.00	2	100.0		7.850	1.59	6
1.	0.0	187.00	2	100.0		7.850	1.59	
1.	00	1056.00		400.0		2.450	1.57	1
8.	00	1056.00		400.0		2.450		
Toe Are	a .:	203 m2						
Segmnt	Dist.	Impedance	Imped.	Tens	sion	Compres	ssion	Circ.
Number	B.G.		Change	Slack	Eff.	Slack	Eff.	
	m	Tons/m/s	%	mm		mm		n
1	1.19	77.00	-6.49	.000	.000	.000	.000	1.591
2	2.16		04	.000	.000	.000	.000	1.571
3	3.14	115.00	8.96	.000	.000	.000	.000	1.571
1 2 3 4 8	4.11	105.55	.00	.000	.000	.000	.000	1.571
8	8.00	105.55	.00	.000	.000	.000	.000	1.571
Pile Da	mping	1.0 %, Ti	me Incr	.243 ms	s, Wave	Speed 43	L14.6 m/	S

<시험말뚝 번호 : TP2-ST>

<시험말뚝 번호 : TP2-ST>

PILETE	CH Cons	sulting E	nginee	rs				27-May-	2006
CPILE Pile: Collec	CP2-ST	5-05-23	Blow: Opera	206 ator: S.H	Data: KIM	PHC500,	ST508,D PWAP(R)	KH-7 Ver. 19	97-1
			CAI	PWAP FINA	L RESULT	S			
Total	CAPWAP	Capacity	: 26	56.0; alor	ng Shaft	56.0); at To	e 210	.0 Tons
Soil Sgmnt	Dist. Below	Depth Below	Ru	Force in Pile at Ru	Sum of Ru	Unit F	Resist.	Smith Damping	Quake
NO.	m	Grade m	Tons	Tons	Tons	Tons/m	Area Tons/m2	ractor s/m	m
				266.0					
1	1.2	1.2	3.7	262.3	3.7	3.09	1.94	. 523	2 54
2	2.2	1.2	2.3	260.0	6.0				2.54
3	3.1	3.1	2.9	257.1					2.54
4	4.1	4.1	4.0	253.1	12.9	4.13	2.63	523	2.54
	5.1	5.1	3.7	249.4	16.6	3 77	2.40	523	2.54
6	6.1	6.1	2.5	249.4 246.9	19 1	2 56	1 63	523	2.54
7	7.0	7.0	10.1	236.8	29.2	10.36	6 59	523	2.54
8	8.0	8.0	26.8	210.0	56.0	27.58	17.56	.523	
Averag	e Skin	Values	7.0			7.00	4.45	.523	2.54
	Toe		210.0				1034.48	.077	19.09
0-11 11	. 3. 3 . 5	1	/n				11.1		
SOIT M	oder Pa	arameters	/ Extens	SIONS		5	Skin	10e	
Case D	ampina	Factor					382	.210	
Unload	ing Ous	ke	(% of 1	loading qu	iake)		69	79	
Unload	ing Lev	rel	(% of F	211)	ause /		80		
		ght					99	.23	

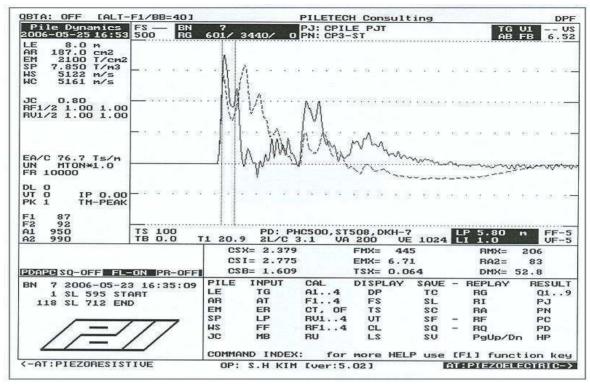

<시험말뚝 번호 : TP2-ST>

CAPWAP	Ru=	266.0;	Co	orrespon	ding J(Rs)= .20;	J(Rx)=1	.00
237.	RA2	268.						
0.	0.	0.	(0.	. 0.	0.	0.	0.
374.	319.	306.	299	9. 293	. 287.	281.	276. 2	
374.	319.	264.	209	9. 154	. 100.	45.	0.	0.
J=0.0	J=0.1	J=0.2	J=0.	.3 J=0.4	4 J=0.5	J=0.6	J=0.7 J=	0.8 J=
			CZ	ASE METH	CC			
1.2					044	(T=	= 44.5	ms)
1.2				1.319				
0.0	301	. 0 -	12.5	.286	012	3.24	± 5.6	20.26
			10.7	.409	018	5.10	4.9	
								21.21
				.424	018	5.5.	4.1	21.67
		. 4 -	10.0	.429	019			STATE TO STATE
						6.0.		
				.439	016			
						0 00.00000		
1 2	472	1	15 0	1 210	044			00.00
m	To	ns	Tons ?	Tons/cm2	Tons/cm2	Tons-m	m/s	m
				Stress	Stress	Energ	У	
Below	For	ce F	orce	Comp.	Tension		. Veloc.	Displ
Dist.	ma	х.	min.			max	. max.	max
			E	XTREMA T	ABLE			
		020				CAL WAL (ic) ver. r	.JJ / - I
ted: 06	-05-23	Ope	rator	. S H KT	Data: PHC M	CADWAD (8,DKH-/ B) Ver 1	997_1
		Plow	. 206		Data. Duc	EOO GEEO	O DEST 3	
D TO								
	Dist. Below Gages m 1.2 2.2 3.1 4.1 5.1 6.1 7.0 8.0 1.2 1.2 J=0.0 374. 374. 0. 237.	Dist. max Below Fore Gages m Ton 1.2 472 2.2 463 3.1 457 4.1 453 5.1 447 6.1 451 7.0 432 8.0 301 1.2 1.2 J=0.0 J=0.1 374. 319. 374. 319. 0. 0.	Dist. max. Below Force F Gages	CP2-ST Blow: 206 Operator ted: 06-05-23 Operator E: Dist. max. min. Below Force Force Gages m Tons Tons Tons Tons Tons Tons Tons Tons	CP2-ST Blow: 206 ted: 06-05-23 Operator: S.H KI EXTREMA T. Dist. max. min. max. Below Force Force Comp. Gages	Data	Data: Phc500,ST50	Data: PHC500,ST508,DKH-7 CAPWAP(R) Ver. 1

<시험말뚝 번호 : TP2-ST>

PILETE	CH Cons	ulting Engi	neers				27-N	May-2006
CPILE I								
Pile: 0	CP2-ST	Bl	ow: 206	1	Data: PH	1C500,ST5	08,DKH-7	7
Collect	ced: 06	-05-23 C	perator:	S.H KI	AI.	CAPWAP	(R) Ver.	1997-
		PI	LE PROFI	LE AND	PILE MOI	DEL		
Dep	oth	Area		dulus	Spec.	Weight	Circun	nf.
	m	cm2	Ton	s/cm2	To	ons/ m3		m
	.00 187.00		2100.0		7.850		1.596	
	.00	187.00	2	100.0		7.850	1.596	
	.00	1056.00		400.0		2.450	1.57	1
8	.00	1056.00		400.0		2.450	1.57	1
Toe Are	ea .	203 m2						
Segmnt		Impedance				Compres	ssion	Circ
Number	B.G.			Slack	Eff.	Slack	Eff.	
	m	Tons/m/s	olo	mm		mm		1
1	1.19	82.34	.00	.000	.000	.000	.000	1.59
2	2.16		04	.000	.000	.000	.000	1.57
	3.14		5.17	.000	.000	.000	.000	1.57
4	4.11	105.55	.00	.000	.000	.000	.000	1.57
8	8.00	105.55	.00	.000	.000	.000	.000	1.57
		1.0 %, Ti						

<시험말뚝 번호 : TP2-ST>



PILETE	ECH Con	sulting E	nginee	cs				27-May-	2006
CPILE									
Pile:	CP3-PH	C	Blow:	77	Data:	PHC500	ST508, D	KH-7	
Collec	cted: 0	6-05-23	Opera	ator: S.H	KIM	CAI	PWAP(R)	Ver. 19	97-1
			CA	PWAP FINA	L RESULT	S			
		Capacity	: 10	00.0; alo				e 84	.6 Tons
								=====	
Soil	Dist.	Depth	Ru	Force	Sum	Unit F	Resist.	Smith	Quake
Sgmnt	Below	Below		in Pile	of Ru	w. Resp	pect to	Damping	
No.		Grade		at Ru Tons		Depth	Area	Factor	
	m	m	Tons	Tons	Tons	Tons/m	Tons/m2	s/m	mr
				100.0					
1	2.0	1.8	3.5	96.5	3.5	3.53	2.25	.392	1.100
1 2 3 4	3.0	2.8	4.6	91.9	8.1	4.60	2 93	392	1.100
3	4.0	3.8	1.7	90.2	9.8	1.71	1.09	.392	1.100
4	5.0	4.8	2.0	88.1	11.9	2.04	1.30	.392	1.100
5	6.0	3.8 4.8 5.8	3.5	84.6	15.4	3.53	2.25	.392	1.100
Averag	re Skin	Values	3.1			2.66	1.96	.392	1.100
	Toe		84.6				431.56	.096	45.000
Soil M	odel Pa	arameters	/Extens	sions		S	Skin	Toe	
Case D	amping	Factor					059	.079	
Unload	ing Lev	vel ight	(% of R	lu)			51		
Soil D	lug We	ight	(Tons)					.17	

<시험말뚝 번호 : TP3-PHC>

PILETE	CH Cons	sulting E	Ingine	ers				27-May	r-2006
CPILE Pile: Collec	CP3-PHC	: -05-23	Blow Ope	: 77 rator	: S.H KI	Data: PHC M	500,ST50 CAPWAP(8,DKH-7 R) Ver. 1	997-1
				E	XTREMA T	ABLE			
Sgmnt	Dist. Below Gages m	Force	F		Comp. Stress	max. Tension Stress Tons/cm2	Trnsfd Energ	. Veloc.	Displ.
1 2 3 4 5	1.0 2.0 3.0 4.0 5.0 6.0		-! -!	25.3 53.3 17.3	.401	024 050 045 009	5.7 5.2 4.7 4.4	1 5.5 7 6.0	48.808
Absolute	2.0				.401	050	(T: (T:	= 21.5 = 23.8	ms) ms)
				C	ASE METH	DD			
RS1 RMX RSU	196. 196. 0.	133. 164.	69. 146. 0.	13	6. 0 5. 127	J=0.5 0. 126.	0. 126.	0. 125. 1	0. (
Current	CAPWAP	Ru= 1	00.0;	C	orrespond	ding J(Rs))= .15;	J(Rx)=1	.00
VMX 6.09		VT1*Z 414.7			MX DM2	M DFN 9 49.089	EMX 5.9		RLT RE
			PILE	PROF	ILE AND I	PILE MODE			
200,000	oth m	Are	a 2	E-M To	odulus ns/cm2	Spec. We	eight s/ m3	Circumf.	
		1056.0 1056.0	0		379.9 379.9		2.450 2.450		
Toe Are	ea .	196 m2							
Top Seg	gment L	ength	1.00	mete	r, Top In	npedance	102.86	Cons/m/s	
Pile Da	amping	2.0 %.	Time	Incr	256 ms	s, Wave Sp	need 390	00.0 m/s	

<시험말뚝 번호 : TP3-PHC>

2006	27-May-2				s	Engineer	sulting H	H Cons	PILETE
97-1	KH-7 Ver. 199	ST508,D PWAP(R)	PHC500,	Data: KIM	7 tor: S.H	Blow: Opera	5-05-23	P3-ST	CPILE D Pile: (Collect
			S	L RESULT	WAP FINA	CAF			
	e 84			ng Shaft	2.0; alo	7: 10	Capacity	APWAP	Total (
	Smith Damping Factor	ect to	w. Resp	of Ru	Force in Pile at Ru		Depth Below Grade	Below	Sgmnt
mn	s/m	Tons/m2	Tons/m		Tons		m		
					102.0				
2.540	.170	.64	1.01	1.0	101.0	1.0	1.9	4.1	1
2.540	.170	.64	1.01	2.0	100.0	1.0	2.9	5.1	1 2 3 4 5
2.540	.170	.64	1.01	2.9	99.1	1.0	3.9	6.1	3
2.540	.170	4.87	7.65	10.4	91.6	7.4	4.8	7.0	4
2.540	.170	4.99	7.84	18.0	100.0 99.1 91.6 84.0	7.6	5.8	8.0	5
2.540	.170	2.36	3.10			3.6	Values	Skin	Average
39.000	.155	413.79				84.0		Toe	
	Toe	kin	S		ions	s/Extens	arameters	del Pa	Soil Mo
	.170	040	9		u)	(% of R	Factor		
	.28	A			70.00	(Tons)	ght	ua Wei	Soil Pl

<시험말뚝 번호 : TP3-PHC>

PILETE	CH Cons	ulting	Engine	ers				27-	-May-2	006
CPILE :	CP3-ST	-05-23	Blow:	: 7	I S.H KIM	ata: PHC		08,DKH-		7 - 1
	ESTORES HINT		-		TREMA TA		; 5554.00\\\\ 15.00	HARDA HISTORY	iah interat	ac au
Pile	Dist.	ma	ĸ. n	nin.	max.	max.	ma	ıx. n	nax.	max.
Sgmnt No.	Below Gages				Comp. Stress	Tension	Trnsf	d. Vel		
TABLE	m	To	ns T	Tons T		Tons/cm2		m n	n/s	mm
1		454		L8.7	1.270					48.404
2 3 4 5 6	2.2	454		30.5	.431	029 028	6.	33		48.151
3	3.1	455		29.2		028	6.	25 17		47.861
4	4.1 5.1	456		37.3						47.535
5		456 453		6.6	.432	054	6. 5.			47.200
7		417	.6 -5	16.6				75		46.888
8		278	. 9 - 1	_ 2	261	016	٥.			46.363
0	0.0	270	. 0	2	.204	.000	** •	45	0.0	+0.303
Absolute	1.2				1.270	054		T= 2 T= 2		
				CA	SE METHO	D				
						J=0.5		J=0.7		
RS1	286.	225.	163.	102	. 41.	0.	0.	0.	0	
RMX	286.	225.	180.	174	. 169.	164.	159.	154.	149	
RSU	0.	0.	0.	0	. 0.	0.	0.	0.	0	. (
RAU	99.	RA2	96.							
Current	CAPWAP	Ru=	102.0;	Со	rrespond	ing J(Rs)= .30;	J(Rx	c)=1.00	0
VMX		VT1*Z	FT1	FM			EMX		RL.	
5.20	1.64	356.9	419.3	439.	2 49.398	49.398	6.5	6.5	163	. 198

<시험말뚝 번호 : TP3-PHC>

PILETECI	H Cons	ulting Engi	neers				27-M	lay-2006
CPILE P	JT							
		Bl	ow: 7	Í	Data: PH	C500,ST5	08,DKH-7	
		-05-23 O						
		PI	LE PROFI	LE AND I	PILE MOD	EL		
Dept	th	Area	E-Mo	dulus	Spec. Weight		Circum	ı£.
	m	cm2	Ton	s/cm2		ons/ m3		m
	00	187.00	2	100.0	7.850		1.596	
1.0	0.0	187.00	2	100.0		7.850	1.59	6
1.0	00	1056.00		400.0	2.450 1.571			1
8.0	00	1056.00		400.0		2.450	1.57	1
Toe Area	a	203 m2						
Segmnt	Dist.	Impedance	Imped.	Tens	sion	Compres	sion	Circ
Number						Slack		
	m	Tons/m/s	%	mm		mm		Ţ
1	1.19	82.34	.00	.000	.000	.000	.000	1.59
1 2 8	2.16	105.55	.00	.000	.000	.000	.000	1.57
8	8.00	105.55	.00	.000	.000	.000	.000	1.57
	TO SHOW IN PROCESSION OF THE	1.0 %, Ti	SANGE THE SANGESTANCE			HANDERSON NAME		

<시험말뚝 번호 : TP3-ST>

<시험말뚝 번호 : TP3-ST>

PILETE	CH Cons	sulting E	ngineer	S			2	27-May-2	2006
CPILE E	PJT		*		NEW TOTAL			200 (20	
Pile: (.P3-ST	. 05 03	BTOM:	117 tor: S.H	Data:	PHC500,	ST508, DI	(H-7	
Collect	iea: 06	-05-23	Opera	tor: S.H	KIM	CAP	WAP(R) \	7er. 199	97-1
			CAP	WAP FINAI	L RESULT	S			
Total (CAPWAP	Capacity	: 13	2.0; alor	ng Shaft	20.6	; at Toe	111	.4 Tons
			=====	=======		======	=======	======	
Soil	Dist.	Depth	Ru	Force	Sum	Unit R	esist.	Smith	Ouake
Samnt	Below	Below		in Pile	of Ru	w. Resp	ect to I	amping	
No.	Gages	Grade		at Ru	545000 CC-0-845	Depth			
	m	m	Tons	Tons	Tons	Tons/m	Tons/m2	s/m	mr
				132.0					
1	1 2	1.2	8	131 2	8	.65	41	570	2.54
2	2.2	2.2	. 8	130.5					2.54
3	3.1	3.1	.0	130.5	1 5	.00	.00		2.54
4	4 1	4.1	. 0	130.5	1.5	.00	.00		2.54
5	5 1	5 1	. 0	130.5	1 5	.00	.00	570	2.54
6	6 1	6 1	. 0	130.3	1 7	19	12	570	2.54
7	7 0	7.0	8 2	122 1	9 9	8 39	5 34	570	2.54
8	8.0	8.0	10.7	130.5 130.3 122.1 111.4	20.6	11.00	7.00	.570	2.54
		Values					1.64		2.540
	Toe		111.4				548.78	.078	36.142
Soil Mo	odel Pa	rameters	/Extens	ions		S	kin	Toe	
Case Da	mping	Factor					153 .	113	
Unloadi	ng Oua	ke	(% of 1	oading qu	lake)	1.12	10	91	
Unloadi	ng Lev	el	(% of R	u)			67	- 	
Poil Di	ug Wei	ght	(Tong)	570				.30	

<시험말뚝 번호 : TP3-ST>

PILETE	CH Cons	ulting	Engine	ers				27-	-May-20	06
CPILE Pile:			Blow	: 117	I	Data: PHC	500.ST5	08.DKH-	-7	
Collec	ted: 06	-05-23	Open	rator:	S.H KIN	1	CAPWAP			-1
				EXT	TREMA TA	ABLE				
Pile	Dist.	max	c. n		max.		ma	x. n	nax.	max.
	Below	Ford	ce Fo	orce	Comp.		Trnsf		.oc. D	ispl.
No.	Gages m	Tor	ns 7	Cong To	Stress	Stress Tons/cm2	Ener	aa	n/s	mm
	ш	101	15	ions ic	DIIS/ CIIIZ	TOHS/ CILIZ	TOILS-	III II	1/5	шш
1	1.2	436	.1 .	-7.6	1.218	021	6.	09	5.0 4	0.539
2	2.2	433.		20.5	.410				5.5 3	
3	3.1	431.	.0 -1	L1.9	.408				5.5 3	
4	4.1	430	. 6 -	-8.0	.408	008	5.	76	5.1 3	9.387
5 6	5.1	434	.1 -3	32.7	.411	031	5.	73	4.7 3	9.238
			.5 -2	22.6		021	5.	71	5.0 3	
7		392.		.0		.000		66	5.4 3	8.881
8	8.0	250.	. 3	2	.237	.000	3.	45	6.2 3	8.660
Absolute	1.2				1.218		(T= 2	2.6 ms)
	5.1					031	(T= 2	24.3 ms)
				CAS	SE METHO	DD				
	J=0.0	J=0.1	J=0.2	J=0.3	J=0.4	J=0.5	J=0.6	J=0.7	J=0.8	J=0
RS1	313.	258.	203.	149.	. 94.	39.	0.	0.	0.	
RMX	313.	258.	203.	179.	. 166.	157.	150.	144.	143.	14
RSU	0.	0.	0.	0.	. 0.	0.	0.	0.	0.	
RAU	104.	RA2	104.							
Current	CAPWAP	Ru=	132.0;	Cor	respond	ling J(Rs) = .33;	J(Rx	()=1.00	
VMX	VFN	VT1*Z	FT1	FMX	X DMX	DFN		EFN	RLT	R
4.72	1.26	352.7	390.4	424.7	7 41.719	41.719	6.4	6.4	193.	23

<시험말뚝 번호 : TP3-ST>

PILETEC	H Cons	ılting Engi	neers				27-M	lay-2006
CPILE P Pile: C Collect	P3-ST	Bl -05-23 O	ow: 117 perator:	I S.H KII	Data: PF	CAPWAP	08,DKH-7 (R) Ver.	1997-1
		PI	LE PROFI	LE AND I	PILE MOI	DEL		
Dep	Depth Area m cm2		E-Modulus Tons/cm2		Spec. Weight Tons/ m3		Circumf.	
1.	.00 187.00 1.00 187.00		2	100.0		7.850 7.850	1.59	6
	1.00 1056.00 8.00 1056.00			400.0		2.450 1.5 2.450 1.5		
Toe Are	a .:	203 m2						
Segmnt Number		Impedance	Change	Slack	sion Eff.	Compres Slack		
	m	Tons/m/s	%	mm		mm		n
1 2 8		82.34 105.55 105.55	.00	.000	.000	.000	.000	1.571
Pile Da	mpina	1.0 %, Ti	me Incr	243 ms	. Wave	Speed 4	114 6 m/	g

<시험말뚝 번호 : TP3-ST>